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ABSTRACT

Human-Computer Interaction is a research field that attempts to improve the

way people and computers interact by creating smarter human-computer in-

terfaces replacing traditional interfaces. Augmented Reality is a popular trend

of Human-Computer Interaction field, which integrates the real physical world

with augmented information corresponding to entities and external context in

reality. Augmented Reality aims to blur the boundary between real and virtual

world to create a more natural and exciting human-computer interface for users.

Due to many kinds of augmented information, Augmented Reality has an enor-

mous number of applications in various social sectors. However, conventional

Augmented Reality systems focus only on enabling users to interact with vir-

tual augmented information in the rendering phase of Augmented Reality. In

contrast, we would like to propose and develop a smart environment of Aug-

mented Reality in which users are allowed to interact with printed predefined

templates to be inputted to the detection phase by creating sketches themselves

as alternating inputs. Our proposed system can recognize users’ sketches and

then overlay the corresponding helpful information for users. For the sketch

recognition module in our system, we prefer category-level object recognition

approaches to instant recognition approaches because of the wide variance of

users’ sketches. For this reason, we evaluate some advanced image classification

approaches, which are recently applied in Machine Learning, on a standard well-

known sketch dataset to figure out the most suitable approach among them for

our sketch recognition module. The chosen approach is a approach which com-

putes a explicit feature map to transform image features from a non-linear kernel

to a linear one, which can combine the high accuracy of a non-linear classifier

and the high speed of a linear classifier. The efficient of this approach makes our

x



proposed Augmented Reality system able to run in real-time with high accuracy.

In addition, we design the AR system so that the sketch recognition module is

completely independent of the system. This independence makes the sketch

recognition module very flexible and any image classification approach can be

plugged in the module without changing the architecture of the system. Be-

sides testing the system with the standard sketch dataset, we also demonstrate

a demo of our system with a sketch dataset of planet signs, which is created

by ourselves, as a example of numerous practical applications of our proposed

system.
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Chapter 1

Introduction

1.1 Overview

At the dawn of computing, computers were only utilized as machines for fast

computation. As computers were getting much smaller and easier to use, people

began to use computers more for their personal tasks with the help of mouse and

keyboard, the only means of computer interaction at that time. As computers

were becoming an integral part of people’s lives, the clear need for more flexi-

ble ways of interaction between people and computers arose. Human-Computer

Interaction (HCI) is a research field that aims to improve the approaches that

people (users) and computers interact to make computers more friendly, usable,

and receptive to user’s needs.

Augmented Reality (AR) is one of the most popular trends of comtemporary

HCI field that aims at developing new human computer interfaces. Instead of

showing information on isolated environment generated by computers, AR in-

tegrates physical world with augmented information corresponding to entities

and external context in reality. By this way, AR can blur the boundary between

real and virtual worlds to create a more natural and exciting human-computer

interface for users. Although the concept of AR originated in 1960’s, studies

and applications of AR have flourished only since late 1990’s [28]. Augmented

information in AR can be in various kinds, e.g. texts, clips, images, graphs, or

3D models. Therefore, AR has an enormous number of applications in a variety

1



of sectors such as education [24], health care [25], geology [39], and art [29].

Google Glass1, a wearable AR system with an optical head-mounted display, is

planned to be officially released in late 2013, which is a remarkable milestone in

the development of AR and allows AR to be widely applied to most of aspects

of daily life in near future.

A typical AR system consists of 2 main phases: detection and rendering. The

detection phase tries to detect if a learned template exists in a query image

captured from the real world. The rendering phase then augments useful virtual

objects corresponding to the found templates. In the early AR systems, these

2 phases were quite static in the sense that no user’s interaction is involved in

those processes. As AR was developed more rapidly in 1990’s, people started

to wish to be able to interact with AR systems. Many researches have been

undertaken to integrate the feature of user interaction into modern AR systems.

However, recent researches have focused only on adding user interaction expe-

rience to the second phase of AR, i.e. the rendering phase. As a result, dozens

of AR applications nowadays allows users to interact with augmented virtual

objects, e.g. manipulate the 3D objects or select the overlaid information by

hand, in real-time so that the systems know user’s feedback from which they

can give subsequent appropriate responses.

On the other hand, the first phase of AR, i.e. the detection phase, has been

mostly improved on forms of templates, not the way users interact with those

templates. Some kinds of templates has been used in conventional AR systems.

The first kind of template is marker. A marker is a special and predefined pat-

tern, e.g. Barcode, QR code, or BCH-ID code, associated with a virtual object

to be augmented. A risen issue is that those artificial markers are easy for sys-

tems to detect but not friendly to users. A user typically cannot know exactly

which virtual object corresponds to a given marker. Another kind of template,

known as natural image, is proposed to be used in AR, which minimizes the user

feeling of unnaturalness caused by markers. A natural image used as a template

1Source: Google, 7 2013. [Online]. Available: http://www.google.com/glass/start/.
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for detection can be a panel, a magazine’s page, a product’s cover, as well as

a magic card. Due to the natural template, users can directly apply AR on

various regular things to see more augmented information about them without

the requirement of a temporary meaningless marker. Furthermore, the replace-

ment of markers with natural images allows researchers to extend the original

problem of instance recognition which usually uses feature matching techniques

to the problem of class recognition in which an AR system can recognize an im-

age and predict to which class the image belongs, thanks to image classification

methods. For example, AR systems can know which books users are reading or

which brand a product belongs to based on logo classification.

Nevertheless, both markers and natural images are printed templates and fixed

in their contents. The contents of these kinds of templates are created offline,

not in real-time. That means as being used as an input for an AR system to

detect, these templates’ contents cannot be changed by users to make new tem-

plates corresponding to different virtual augmented information. In this thesis,

we suggest integrating the user interaction into the detection phase of AR so

that the way of creating AR templates for detection becomes more flexible and

brings more exciting experiences to users. To this end, our proposed system

allows users to sketch themselves pictures of certain things (i.e. objects, ani-

mals, plants) instead of using printed predefined templates. The system then

recognize those images in real-time and immediately display the corresponding

virtual information for users. In other words, we would like to replace the printed

predefined template as a traditional input of AR for detection with a new means

of input which is users’ sketches.

Sketch recognition is not a new issue. This problem has been studied by many

researchers [53, 46, 16]. Sketch recognition can be viewed as instance recognition

problem or class recognition one. The first can be dealt by feature matching and

geometric alignment strategies commonly used in Computer Vision. The latter,

which is also known as category-level or generic object recognition, can be re-

solved by image classification approaches from Machine Learning. We prefer to

3



approach sketch recognition in AR as a class recognition problem.

There are 2 reasons why sketch recognition in AR should be viewed as a problem

of class recognition instead of instance recognition. The first reason is because

the preferred question is to which class a sketch belongs, not which instance

a sketch is. User’s sketches vary enormously but they portray a finite set of

classes. The second reason is because sketches in a class can have different spa-

tial arrangements of features. Instance recognition relies on the processes of

matching two images’ features and then aligning the two sets of found matching

features. That is why two images cannot match if the spatial arrangements of

their matching features are inconsistent. Class recognition methods in Machine

Learning can overcome this drawback of instance recognition strategies because

these methods pay more attention on global image’s descriptor representing im-

age’s contents than spatial arrangement of image’s features.

Class recognition has been deeply studied for a long time. Powerful recogni-

tion methods in the field of Machine Learning have been developed to classify

various kinds of patterns such as handwritten texts, gestures, speeches, objects

and scene images with high accuracy. Applying recent advanced classification

methods in Machine Learning, we develop a smart environment with AR in

which users’ sketches are used as the input to be recognized.

1.2 Motivation

There are 4 reasons why we want to develop our proposed system:

First, AR is one of the hottest trends in the field of HCI and promises to be

widely applied in daily life. Google Glass, the most innovative and well-known

product of AR, is attracting a lot of interest from both end-users and researchers.

Second, an AR system not only needs to provide more virtual information for

users but also needs to involve users’ interactions to enhance users’ exciting ex-
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periences.

Third, the traditional input of printed predefined template in an AR system

should be replaced with users’ sketches so that users can easily customize the

input in real-time.

Fourth, recent powerful methods of image classification in the field of Machine

Learning should be applied to our proposed system to deal with the problem of

sketch recognition.

1.3 Objectives

This thesis has two main objectives:

• Study and compare some recent approaches of image classification in Ma-

chine Learning in order to select the most efficient approach among them

for building a sketch recognition module.

• Propose and develop a smart environment of Augmented Reality in which

users are provided with extra multimedia and social-media information

corresponding to sketches created by themselves, based on the built sketch

recognition module.

To fulfill this objective, we have to take the following tasks:

• Study terms of HCI, history of development to know about HCI.

• Study terms of AR, history of development, properties of an AR system

as well as detection methods in AR to have a background on AR.

• Study the problem of sketch recognition and its known approaches.

• Study, implement, and conduct some experiments with image classification

methods in Machine Learning to find out which method suits the problem

of sketch recognition.

• Develop an AR system with users’ sketches as the input.

5



1.4 Outline

• Chapter 2. We briefly introduce HCI, AR as well as their various applica-

tions.

• Chapter 3. We give an overview of sketch recognition problem and image

classification methods in Machine Learning.

• Chapter 4. Our conducted experiments are presented and the evaluation

results are shown.

• Chapter 5. The details of our proposed AR system are described.

• Chapter 6. We conclude the thesis and plan some further research.

6



Chapter 2

Backgrounds and Related works

In the chapter, we provide the following features.

• An overview Human-Computer Interaction (HCI) including definitions,

terminologies and current systems. In addition, the related knowledge is

for HCI system design consist of unimodal and multimodal.

• An interesting approach using sketch as an input for HCI is briefly in-

troduced. Additionally, we also introduce to Augmented Reality, which

provide interface as well as smart environments of HCI.

2.1 Human-Computer Interaction (HCI)

Procedures designed for interaction between human beings and computer are en-

hanced in recent decades [1]. The usual interaction based on external device like

keyboard, mouse, etc. However, recent studies have focused on multimodal than

unimodal HCI and effective communications are simple orders [1]. Unimodal and

multimodal HCI are presented in section 2.1.3 and 2.1.4 respectively. Thank to

achievements of technology, the distance between human beings and computer

is more and more narrowed. Many new interactive forms are introduced and

many productions are released.
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2.1.1 Techniques of Human-Computer Interaction

Nowadays, techniques can design HCI system based on Human’s sense. There

are three typical types consist of visual perception, Hearing, and Haptic percep-

tion.

The most of devices are used for input is visual perception, and these devices

are binary or pointer forms. The binary form devices usually use buttons on

keyboard. The pointer form devices such as mouse, stick controller, or touch

pen are the most popular. The output devices can be pictures or printers.

The input devices of Hearing require module of Speech Recognition [49], which

can help the sound input and output devices such as speaker, warning system,

GPS, etc become easier. However, the system for speech recognition is quiet

hard to implement.

The devices with expensive price such as haptic interact with skin as well as

muscle by through touching, force. The devices of haptic is often used for vir-

tual reality or disability.

Recent technologies wish to develop combining many interaction ways and uti-

lize available modules such as internet and cartoon. These technologies can

be divided into three main kinds: mobile devices, wireless device, and virtual

device. For example, Global Positioning System (GPS) use for supported de-

vices in military such as infrared projector, Personal digital assistant (PDA).

Application for virtual tour is used to watch flats without presentation.

2.1.2 Advanced techniques of Human-Computer Inter-

action

There are many ways for communication human beings and computer. Compute

can recognize handwritten letters of human to convert into the corresponding

letters. Further more, human beings can interact with computer by voice, move-

8



ments, etc and even brain. Interface is used for interaction includes input and

Figure 2.1: Dr. Peter Brunner presented simulation interactive system computer

can understand what a human being thinks 1.

output data procedure. In addition, interaction is conducted by different specific

channels, communication. There are many channels for connection user want.

These connection channels is called as a modality [27].

In the next section, we want to introduce two typical modality HCI of unimodal

and multimodal.

2.1.3 Unimodal Human-Computer Interaction

A procedure based only on single channel is called unimodal. Based on modali-

ties for connection, there are three main kinds:

• Visual - based.

• Audio - based.

• Sensor - based.

HCI based on visual senses is concentrated to study []. Some interesting fields

for development are as follow.

1Image source: http://computer.howstuffworks.com/brain-computer-interface.htm/printable
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• Face analysis.

• Tracking body movements.

• gestures recognition.

• Eye movements recognition

To application of face analysis as well as expression recognition [12, 19, 45], the

application recognize expression of human to make suitable actions. In tracking

body movements as well gesture recognition, the application help user order for

requirement. The applications of eye movements recognition is used for disabil-

ities. Fig. 2.2 presents the disability to use computer based on eye moments

recognition.

Figure 2.2: Eye moments recognition system for disability.

HCI based on hearing is also a significant field The system can be divided into

the following groups:

• Speech recognition.

• Expression analysis of listener.

• Music communication.
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Studies about speech recognition [7] has been focused for a long time. Recently,

research is about human expression in smart environment is also focused on [7].

An interesting field based on music communication is applied for industry of art

including sound and visual perception [37].

2.1.4 Multimodal Human-Computer Interaction

Multimodal HCI is system use combining many connection channels. One of

the most popular system is the system combining gestures and speech [43]. The

important thing of multimodal HCI is the interactive support of channels for

recognition. For instance, based on lip moments (visual-based) can support

speech recognition (audio-based). Speech recognition (audio-based) can support

action recognition (visual-based).

Figure 2.3: Project of Natal Xbox 360 2.

There are many application of multimodal HCI system. The applications sup-

port disability to communicate with computer by actions, head, eyes, and speech.

Based on current expression human, system can turn on different types of music

like pop or rock music. Computer also recognize expression based on voice with

specific change of amplitudes. In healthy, Neuro-Surgical Robotics with compo-

nents including hand,, feedback vision sensor, controller. Sensor handle signal

2Image source: http://www.stuffwelike.com/stuffwelike/2009/06/14/project-natal-ismicrosofts-

next-console/
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for surgeon continuously to instruct for communication of human and computer.

In entertainment, thank to action recognition, the application of Natal project

on Xbox 360 allow user to control without including devices.

In this work, Human being can interact with computer through sketches as

a visual-based modality HCI. User can sketch what they imagine about objects.

To be able to visualize information from sketches input, interface as well as

smart environment is also important. We propose sketches as input for Aug-

mented Reality (AR) smart environment. The next section is about description

of 2D sketch as an input for HCI with Augmented Reality smart environment.

2.2 2D sketch as an input for HCI

User can interact with computer through sketches as an input. Augmented

Reality provide interface as well as smart environment for HCI. Based on sketch

of user, Augmented Reality will augment virtual information (e.g. multimedia

or social media) for contexts in real world. In this section, an overview as well

as frameworks and application of Augmented Reality is presented as follow.

2.2.1 Augmented Reality

Introduction of Augmented Reality

From handling with reality information, system provides augmented informa-

tion which relates to current real contexts. This is not only to help user get

information of reality but also to allow them interact with virtual objects which

is augmented in visualization. Fig. 2.4 presents Reality and Virtual Reality at

many different levels. Users only see virtual objects in Virtual Reality. Aug-

mented Reality is applied to combine Virtual information for Reality [2].

Augmented Reality is to augment virtual information in reality make user be

interested by visualizing lively virtual objects [2]. A suitable Augmented Reality

visualizes virtual information on reality contexts or real space which users are
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Figure 2.4: Relation between Reality and Virtual Reality [28]

able to observe reasonably. Thus, users can not see any distinction between vir-

tual objects and real contexts. This is also main purpose of Augmented Reality

to remove distinction between Virtual objects and reality and improve awareness

and interaction between human beings and reality [24].

Figure 2.5: Temple 3D model in Greece augmented to natural sense of real one
3

.

Fig. 2.5 is shown to augment 3D model object to real context of Greece temple.

Virtual Information is augmented on contexts has many different kinds. How-

ever, there is two main kinds including multimedia (texts, picture, video, 3D

models, sound, etc) and social media (phone number, web-page, comments in

internet community, etc). In addition, Augmented Reality can be improved by

integrating interaction between human beings and virtual objects.

3Image source: http://www.theposthole.org/read/issue/6

13



The properties of Augmented Reality [2] is as follow.

• Mixing between reality and virtual objects reasonably.

• Recording user’s action to update information in real time and make dis-

tinction between Augmented Reality and Computer graphics[52].

• Visualization is the closest to the most of natural view.

Brief history of Augmented Reality

The idea of Augmented Reality appeared firstly in the 1930’s when computer

had been introduced and was popularly used in the 1990’s [28]. Until the 1960’s

and 1970’s, computer companies began working on visual environments of Aug-

mented Reality. In the late 1950’s, a cinematographer named Morton Helig

designed a simulator device with name of Sensorama 4. This device is used to

simulate sounds, vibration, and taste. In 1966, head mounted display was in-

troduced at the first time and was designed by Ivan Sutherland. This device

allowed user interact with around environments directly.

Brief history of Augmented Reality can be presented on overview of Table 2.1

based on Ig-Jea Kim’s presentation at SIGGRAPH Asia conference in 2010 [28].

Practical application of Augmented Reality

Augmented Reality system provides many different kinds of information such

as texts, pictures, video, etc. These information can be used for many different

fields including education [24], healthy [25], geology [39], art [29].

Augmented Reality also provides basic information such as heart beat, blood

pressure, and status of parts for surgeons. This can help doctors diagnose status

of patents quickly. Say for example, Augmented Reality can be used for X-Rays

imaging based on real image from echocardiography [41] as well as observing

4Online available: http://www.mortonheilig.com/InventorVR.html.
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Year Event

1968 Ivan Sutherland designed Augmented Reality system of head mounted display

at the first time.

1992 Tom Caudell and David Mizell introduced the term “Augmented Reality”

1996 Jun Rekimoto introduced maker with 2D matrix. These markers allow camera

to determine the six arbitrary points region.

1997 Stevie Feinner introduced Touring Machine, which is the first Mobile Aug-

mented Reality System (MARS).

1999 H.Kato and M.Billinghurst introduced ARToolkit.

2000 B.Thomas introduced AR-Quake, which is the extension editor of game on

the famous Quake computer.

2003 R. Raskar introduced iLamp, which derived the origin for augmenting infor-

mation with camera system.

2006 Nokia introduced MARA, mobile device can presented Augmented Reality

with many sensors.

2009 SixthSense Project of Massachusetts Institute of Technology (MIT) used de-

vices based on Augmented Reality.

Table 2.1: Benchmarks of Augmented Reality

status of baby in body of pregnant woman 5is shown in Fig. 2.6.

Figure 2.6: Combining Echocardiography and Augmented Reality. [28]

5Online available: http://www.cs.unc.edu/Research/us/.
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Recently, Augmented reality also has been applied in film-making industry. To

get creature of film, contribution of Augmented Reality in field of entertain-

ments is very significant. Especially, creatures about science fiction, mixing real

characters and cartoon characters in film named “Who Framed Roger Rabbit”,

or film about super heroes, etc.

Figure 2.7: The film “Who Framed Roger Rabbit” mixing real and cartoon

characters [28].

An interactive game Play Station Move, Wonderbook of Sony brought the lively

magical world for users from normal books only. PS Move is a magic wand

help users enter the enchanted world of dragons, fairies and spell caster. Expo

is also the significant field for Augmented Reality. Instead of coming far away

place of North pole to discovery natural life of animals, using Augmented Re-

ality technology with 3D models, we can observe life of species in North pole.

Additionally, Augmented Reality system also provides information about species

extinction which did not exist in the earth and interacts with these species. This

still has many disadvantages in current time of Expo.

In education, Augmented Reality helps learning and teaching become more intu-

itive and attractive. AR application “Learngears” help learners study about the

planets of solar system or geology by interacting with 3D models of the Earth

which is visualized from a book.

A project in our lab called “Smart Interactive Book” is able to display aug-

mented content of an arbitrary book contains markers which are figures. The
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augmented content is the field of astronomers help learners be able to visual the

activities of planets in solar system easily. In addition,“Smart Interactive Book”

also allow learners to interact with planets as well as virtual objects by using

hand touching.

Figure 2.8: Wonderbook 6.

(a) BBC Frozen Planet AR. (b) Natural Geographic Channel Live AR.

Figure 2.9: Augmented Reality (AR) at Expo7.

6Image Source: http://www.engadget.com/2012/06/04/sony-wonderbook-ps-move/.
7Image Source: http://vimeo.com.
8Available online video: http://www.youtube.com/watch?v=iT2ek8N0VlY.
9Available online video: http://www.youtube.com/watch?v=3K6GXECbTxM.
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Figure 2.10: Augmented Reality Leanergears 8.

Figure 2.11: Smart Interactive Book 9.

Researchers of IBM Labs study about the way to help shoppers be able to reach

to production and transactions through shopping application of Augmented Re-

ality. This application can send coupons, greetings, comments, and detail in-

formation of production for customers. Similarly, A study in our Labs “Smart

Shopping Assistant” [42] allows users to use smart phone to search necessary

information about production.

Figure 2.12: Smart Shopping Assistant.
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2.2.2 Frameworks using Augmented Reality

Object tracking is a significant component in applications of Augmented Re-

ality. Tracking in application of Augmented Reality usually require the higher

complexity and handle in real time. There are two popular tracking frameworks:

localization and visual information [28].

Framework using localization

Tracking based localization is widely used in Global Positioning System (GPS).

Using this technology in tracking help users use Augmented Reality even in

natural context. However, because of global system, the accuracy is quiet low.

In addition, some frameworks tracking objects based on position such as Cell-ID,

Ultra Wide Band, Wifi Positioning System [28].

Framework using image processing

In case of using stable context, users do not be allowed to move flexibly. Frame-

work using camera is a possible solution, because region for tracking is smaller

than region in framework using localization. There are two important things

for frameworks using camera, which are camera configuration and tracking al-

gorithms. With enhancements of camera as well as optimization method for

tracking algorithms, results achieve accuracy closes to the state-of-the-art bench-

marks. There are two main kinds of frameworks using camera including Marker

tracking and natural feature of objects. Marker pattern

This framework is used to predict camera pose with respect to object based

on marker [29], specific image [32], or bokode [40]. Marker is special pattern

such as barcode, QR-code, BCH-ID marker. Markers connect to target object.

Frame from real world is recorded, after that, region contains markers is ex-

tracted. regions are compared with suitable patterns. Time for recognizing a

marker is linear with respect to the number of markers. Therefore, the efficient

of framework is very high in case the great number of marker in image.
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ARToolKit [39], ARToolKitPlus [61], and ARTag [20] are famous tools used

widely in practical of Augmented Reality. ARToolKitPlus supported two kinds

marker for ID-Marker: Simple ID-Marker and BCH ID-Marker. Markers is cre-

ated by 6 × 6 matrix. Simple ID-Marker encode a number of 9 bits for 6 × 6

matrix, the number of supported patterns is 512 including ID (from 0 to 511).

BCH ID-Marker use Cyclic Redudancy Check algorithm, which encoded a num-

ber of 12 bits for 6×6 matrix. BCH ID-Marker also supports 4096 patterns and

ID is from 0 to 4095. The number of supported markers increase follow size of

matrix.

Using markers usually achieve the high speed handling and accuracy. In ad-

dition, these markers can be included for arbitrary targeted objects. However,

the newspapers or magazines usually do not have space enough to include mark-

ers. Including markers to pages make reader not feel comfortable.

(a) Barcode. (b) QR-code. (c) BCH ID-Marker.

Figure 2.13: Patterns used in Augmented Reality (AR).

Natural pattern image

For example, images can be cover of newspapers or magazines. Natural image

based matching is the typical framework use sub-pattern in a large image (e.g.,

frames captured from camera). There are two mature approaches of template

matching: local feature-based template matching and template-based template

matching.
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Approach of template matching uses color information is majority factor to

determine the different levels within images. This difference could be between

a large image and region parts from original image. The approach uses some

quantity to distinct pattern such as Sum of Squared Differences (SSD), Sum of

Absolute Differences (SAD) [34]. Frameworks of template matching uses simple

regions. Further more, this approach can handle with simple as well as com-

plicated image. However, the disadvantage is variant orientation of image such

as scale, rotation, and pitch. Thus, using this framework is impossible in our

context.

The approaches use features such as edges [55], angle [8], or blob [36, 4]. There

are two steps for handling of local feature including detecting and extracting

keypoints of images. With this approach, we can apply in recognition object

because the advantage is variant orientation. However, the disadvantage is very

large complexity. There are some optimization methods like Randomized Tree

and Ferns [44] but the algorithm require the great amount of time in training

process. Combining recognition with tracking is complex problem because of

the high complexity and only using for the tiny of objects.

Image classification

Problems of frameworks mentioned in the above sections are to detect whether

frame image recorded contains patterns (Marker or natural patterns) and its

position. Thus, pattern in image frame can be lacked of an arbitrary part with

respect to original pattern. However, relation about space between these com-

ponents are still reserved about presentation.

In image classification algorithms, a image can be predicted to a label of class

if image contains similar features with with original images in that class. Even-

tually, predicted images do not reserve relative space with original images.

Image classification can be used to recognize patterns appeared in a large im-

21



age whether pattern belong to which class, i.e. figuring out topic of patterns.

Therefore, the main question of frameworks in the above sections is “What pat-

tern does frame image contain ?”. In frameworks using image classification, the

question is “What topic is image ?”.

For instance, to make know which pages in enchanted book “Snow White and

the Seven Dwarfs” for readers, this framework recognizes natural patterns which

are images from book. In image classification of patterns in book, features are

extracted for classifying. Thus, reading an arbitrary page of book can conclude

for reader that they read what topics of book without the specific page.

With achievements of AR frameworks, AR is applicable of smart environment

for HCI. In this work, specially, we propose 2D sketch as an input for Aug-

mented Reality in HCI system. This make user obtain interesting experiences

with normal 2D sketches while virtual objects is lively visualized at the same

time.

2.3 Summary

Human-Computer Interaction with Augmented Reality smart environment makes

the distance between human beings and computer vanish. With Multimodal HCI

system, people can combine many information such as images, audio, video, 3D

models animation, etc to establish a hierarchical framework for augmenting in

real world. In addition, Augmented Reality also provide user interesting ex-

periences to enjoy valuable features. In this thesis, we develop Multimodal

Human-Computer Interaction using input 2D sketch images for Augmented Re-

ality smart environment combine with many connection channels such as audio,

video, texts and 3D models. The system allow user to be able to interact with

computer by relative sketch objects, and recognize objects to augment neces-

sary virtual information. In the next chapter, we will introduce about sketch

recognition module which is the main factor in the whole framework.
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Chapter 3

Sketch Recognition

3.1 Sketch Recognition Approaches

Sketch data is one of visual figures users can manipulate with computer flexi-

bly. Sketch recognition is one of interesting parts in pattern recognition as well

as computer vision. Many approaches achieves promising results and can be

applicable to practical frameworks. In a research of Akshay [5], method based

on values of entropy as a parameter to classify sketches which can be texts or

charts. Another method of Dean Rubine [50] defined 13 distinct features for

sketch representation. The disadvantage of these methods is the significant af-

fection of versions in sketching to accuracy in recognizing because sketches can

be lacked of an arbitrary part by hiding.

Some methods followed the idea of retrieval and synthesis for sketches. A image

can be considered to content-based retrieval [15]. However, this can not achieve

semantic understanding because of ignoring learning from sample of sketches.

Synthesis systems users can sketch to generate the huge amount of data to offset

the problem of geometric between sketches and image content [17] or allow users

include texts, labels, contexts around, etc for sketches [10].

Several approaches of selecting geometry features or static image features to

classify categories of images. An approach of Lee et al. [33] used fast nearest

neighbor matching to figure out similarity of geometry in edge of objects. Simi-
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larly, a proposed method of Heeyoul Choi [11] based on multiplication of Isomap

to compute the difference within sketches.

Combining ideas of synthesis system with geometry feature [13] get higher accu-

racy than conventional methods because representation of images is more detail

and can be considered in a larger space of features.

In series of researches [53, 46], understanding human beings try to sketch input

at higher level is quite significant. System identity automatically small patches

of strokes types such as lines, circles, and arcs from noisy user input achieved

good performance in real time.

A new baseline of sketch recognition is that of trying to discover how human

beings sketch objects and how well human beings and computer can recognize

sketches [16]. Based on common benchmarks, they try to define taxonomy of

objects. On LabelMe dataset [51], selecting 1000 labels appear with the most

frequent. After that, removing labels of objects which can be duplicated such

as context around, position change, or combine with another object. Similar

to Princeton Shape benchmark [56] and Caltech-256 [23], selecting typical cate-

gories for sketching. By asking to request members to make filtering categories

of 250 objects, this is baseline for generating new dataset of human sketch. In

addition, by using algorithm about feature representation of images combine su-

pervised learning like Support Vector Machine for classification, they achieved

promising results and a framework in real time.

To summarize, the problem of sketch recognition can be viewed as either in-

stance recognition problem or class recognition one. The first can be dealt by

feature matching and geometric alignment strategies commonly used in Com-

puter Vision. The latter, which is also known as category-level or generic object

recognition, can be resolved by image classification approaches from Machine

Learning. In this thesis, we prefer to approach sketch recognition in AR as a

class recognition problem.
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There are 2 reasons why sketch recognition in AR should be viewed as a problem

of class recognition instead of instance recognition. The first reason is because

the preferred question is to which class a sketch belongs, not which instance

a sketch is. User’s sketches vary enormously but they portray a finite set of

classes. The second reason is because sketches in a class can have different spa-

tial arrangements of features. Instance recognition relies on the processes of

matching two images’ features and then aligning the two sets of found matching

features. That is why two images cannot match if the spatial arrangements of

their matching features are inconsistent. Class recognition methods in Machine

Learning can overcome this drawback of instance recognition strategies because

these methods pay more attention on global image’s descriptor representing im-

age’s contents than spatial arrangement of image’s features.

Class recognition has been deeply studied for a long time. Powerful recogni-

tion methods in the field of Machine Learning as well as Neuroscience have been

developed to classify various kinds of patterns such as handwritten texts, ges-

tures, speeches, objects and scene images with high accuracy. To deal with the

problem of sketch recognition, we focus only on the problem of image classifica-

tion simply because sketches are essentially images.

3.2 Sketch Recognition with Machine Learn-

ing

Sketch recognition can be done by using image classification approaches in Ma-

chine Learning. In image classification, an image is classified according to its

visual content. Specifically for the problem of sketch recognition, each sketch of

users is regarded as an image, which is then classified in different ways corre-

sponding to different approaches. To choose the appropriate approach for the

sketch recognition module in our proposed system, we try five image classifi-

cation approaches in Machine Learning and evaluate their performances. We

divide these approaches into two groups: one using global descriptors to encode

25



images, and the other one using local descriptors to encode images. Although

used techniques and schemes may vary slightly from approach to approach, all

of these five approaches follow two main processes: training process and testing

process.

The training process is briefly illustrated in Figure 3.1. In this process, we

have a training set of m sketch images S = {s(1), ..., s(m)} and a list of labels

Y = {y(1), ..., y(m)} where y(i) ∈ {1, ..., nclass} is the class label of the sketch im-

age s(i) and nclass denotes the number of classes. For example, y(i) = k indicates

the sketch image s(i) belongs to the class k.

Figure 3.1: The training process for image classification.

The training process consists of two key stages as follows:

• Image Encoding: The goal of this stage is to encode the information of

the image s(i) into anM -dimensional image descriptor x(i) which represents
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the entire image. After this stage, we have a list of training examples

{(x(i), y(i)); i = 1, ...,m} where x(i) ∈ RM is the descriptor of the image s(i)

and y(i) is the class label of the image s(i), ready for training a classifier

in the next stage. Based on the scheme of encoding, we divide the five

approaches into two main groups.

– The first group of approaches, including Approach 1 and Approach 2,

treat an image as a whole. An image is regarded as a grid of pixels in

which each pixel is represented by a floating point number indicating

the grayscale intensity at that location. The encoding stage includes

two sequential steps:

∗ Global Feature Extraction: In this step, this group use the entire

image, which includes all pixels as the input, as the global fea-

ture. As a result of extraction, we obtain the grid of all pixels

per image.

∗ Building Image Descriptor : The grid of pixels for each image are

then encoded into a representing vector, i.e. image descriptor,

by simply being unrolled (Approach 1) or also going through

a Sparse Autoencoder (Approach 2). All image descriptors are

used for training a classifier in the classifier training stage.

– The second group of approaches, including Approach 3 - 4 - 5, con-

siders an image a collection of image patches and encodes the image

by describing the image in terms of a set of common visual patches.

More specifically, the encoding stage is divided into four sequential

smaller steps:

∗ Local Feature Extraction: This step aims to extract local patches

that characterize the image and to describe those patches. There

are two strategies of extracting local patches that are commonly

used in the problem of image classification. The first one is ex-

tracting the local patches around the interest points of an im-

age, e.g. Harris corners or SIFT interest points, which are called
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sparse features. The second strategy is extracting the correspond-

ing patches of densely sampled keypoints over the entire image,

which are called dense features. We prefer the second strategy

for recognizing sketches because the first one based on interest

points is only suitable for texture or scene images, which have

many salient points, not for sketch images. The number of inter-

est points per sketch image is too small to represent the whole

sketch. Therefore, we use only dense features, specifically dense

SIFT, for all approaches of this group. Next, the patches around

the features are described by vectors of identical length, e.g. 128

for SIFT feature. These vectors are called feature descriptors.

After this step, we obtain a set of feature descriptors for each

image.

∗ Visual Dictionary Construction: The number of all training im-

ages’ features is very large. However, they fall into a much smaller

number of groups of similar visual features in the feature space

of training images. Each group is represented by a visual word,

i.e. a visual feature that describes the common characteristics of

the group. The goal of this step is to cluster the visual features

of all training images into a number of clusters, each of which

corresponds to a visual word. The most popular clustering algo-

rithm is K-Means. Therefore, K-Means algorithm is used for all

approaches. This step results in a visual dictionary formed by all

visual words.

∗ Quantization: As we have a dictionary of visual words, an image

should be regarded as a collection of visual words, i.e. Bag-of-

Words model, instead of discrete features. For this reason, each

feature of an image must be quantized to the set of visual words.

There are two kinds of quantization. The first one is hard quanti-

zation in which a feature can be assigned to only one visual word,
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as Vector Quantization used in Approach 3. The second kind is

soft quantization in which a feature can be assigned to multiple

visual words, as Locality-constrained Linear Coding used in Ap-

proach 4 and Kernel Codebook Encoding used in Approach 5.

After this step, each feature is represented in terms of the visual

words.

∗ Building Image Descriptor : The number of features vary greatly

from image to image. Therefore, to equalize the lengths of image

descriptors representing different images so that we can compare

two images in the classifier training stage, we have to pool the

features of each image by an average pooling function on a single

layout of the entire image (Approach 3 and Approach 5) or a

max pooling function on a spatial pyramid layout of image (Ap-

proach 4) to build the final image descriptor for the image. This

step finalizes the image encoding stage and every training images

is represented by the corresponding image descriptor of a fixed

length, ready for training a classifier in the next stage.

• Classifier Training: In this stage, the resulting image descriptors from

the image encoding stage are inputted to a classifier so that the classifier

can learn one or some classification models depending on the approach.

The most popular classifier is Support Vector Machine (SVM). Thus, we

also use SVM for all approaches except Approach 1 in which a Neural

Network is used as a classifier. Among the approaches with SVM, we only

use a non-linear SVM with the Gaussian kernel for Approach 5 and use

linear SVMs for the others. After this stage, the training process finishes

and results in one or some trained classification models, ready for the

testing process.

In the testing process, a testing image is also processed through the feature

encoding stage as in the training process without the step of visual dictionary

construction. In addition, in the stage of classifier training, we do not need to

29



build classification models again but apply these ones to the testing image in

order to predict which class the image belongs to.

A summary of five classification approaches that we evaluate in this thesis is

shown in Table 3.1. The detail of each approach is described in the following

sections.
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Appr. Image Encoding Classifier

Global Feature Building

Image

Descriptor

No. 1 Grid of all pixels from image Unrolling Neural net-

work

No. 2 Grid of all pixels from image Unrolling

+ Sparse

Autoencoder

Linear SVM

Local

Feature
Clustering

Quantization Building

Image

Descriptor

No. 3 Dense

SIFT

K-

means

Vector Quanti-

zation

Average

pooling

on spatial

pyramid

Explicit fea-

ture map +

Linear SVM

No. 4 Dense

SIFT

K-

Means

Locality-

constrained

Linear Coding

Max pooling

on spatial

pyramid

Linear SVM

No. 5 Dense

SIFT

K-

Means

Kernel Code-

book Encoding

Average

pooling on

single layout

of entire

image

Non-linear

SVM with

Gaussian

kernel

Table 3.1: Approaches of image classification for evaluating.

31



3.3 Approach 1 - Using Neural Network

This approach falls into the first group of approaches, which treat an image as a

whole. The idea of this approach is very obvious. Providing we do not any spe-

cial kind of feature to extract for our images, we simply retain all of the image

information by getting the grid of all pixels per image. Since the obtained pixels

are raw data, we use a neural network to classify images based on their pixels.

A neural network is able to classify raw data because the information processing

paradigms of neural networks are inspired by the way biological neural systems

process data.

Specifically, in this approach, the grid of pixels for each image is first unrolled

into a representing vector. The vector is then used as an input to a neural net-

work for learning a classification model. The flow of the approach is shown in

Figure 3.2.

Figure 3.2: The flow of Approach using Neural Network.

3.3.1 Global Feature Extraction

Let npixel denote the number of pixels in an image. The number of pixels per

image is typically large. If they are inputted to a neural network, the training

time is very slow. Therefore, all images should be resized to a small size (e.g.

32× 32 or 64× 64).

32



3.3.2 Building Image Descriptor

The image descriptor is the unrolling of all pixels, so it has the length equal to

the number of pixels, i.e. x(i) = [x1, ..., xM ], i = 1, ...,m;M = npixel where x(i)

indicates the i-th training example.

3.3.3 Classifier Training

Neural networks are used for learning classification model in this approach. We

first briefly describe the neural network model constructed for our problem of

sketch recognition and then show how we train a neural network from the train-

ing examples and how a trained neural network is used to predict the class label

for a testing example.

Neural Network Model

A neural network has 3 layers: an input layer, several hidden layers, and an

output layer. For simplicity, we use a neural network with only one hidden layer

in our problem. Let L1, L2, L3 denote the input layer, the hidden layer, and the

output layer respectively. We also use u
(l)
i to denote the i-th unit of layer Ll.

For our problem, the input layer L1 consists of nin units and unit u
(1)
i takes

element xi of image descriptor x as input, which is also the input of the neural

network. The output layer L3 consists of nout units and unit u
(3)
i outputs the

probability that the training example x belongs to the class labeled as i, which is

also the output of the neural network. The hidden layer L2 consists of nhid units

and each unit u
(2)
i plays the role of a neuron which receives its input computed

from the outputs of all units in the input layer and uses its output to compute

the inputs of every units in the output layer.

Our neural network has parameters (W, b) = (W (1), b(1),W (2), b(2)), where W
(l)
ij

denotes the parameter (or weight) associated with the connection between unit

j in layer Ll, and unit j in layer Ll+1. Thus, we have W (1) ∈ Rnhid×nin and

W (2) ∈ Rnout×nhid. Furthermore, we add one bias unit to the input layer and the
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hidden layer as an intercept term. The bias units, which is not counted in the

number of units in a layer, don’t receive inputs and always output the value +1.

Let b
(l)
i denote the bias associated with unit i in layer l+1, so b(1) ∈ Rnhid×1 and

b(2) ∈ Rnout×nhid.

We use zi(l), ai(l) to denote the input and output value of unit ui(l) respec-

tively. Output value ai(l) is computed from input value zi(l) as ai(l) = f(zi(l))

where f : R→ R is called the activation function. In our problem, we choose f

to be a sigmoid function:

f(z) =
1

1 + e−z
(3.1)

The visualization of a sigmoid function is presented in Figure 3.3.

Figure 3.3: Visualization of a sigmoid function whose range is [0, 1].

Formalizing above descriptions, the computation that this neural network rep-

resents is given by:

z
(2)
i =

nin∑
k=1

W
(1)
ik a

(1)
k + b

(1)
i

= W
(1)
i a(1) + b

(1)
i

(3.2)

a
(2)
i = f(z

(2)
i ) (3.3)
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z
(3)
i =

nhid∑
k=1

W
(2)
ik a

(2)
k + b

(2)
i

= W
(2)
i a(2) + b

(2)
i

(3.4)

a
(3)
i = f(z

(3)
i ) (3.5)

Unit u
(1)
i in the input layer L1 do not have input value z

(1)
i , so the activation of

the input layer takes value from the input training example:

a(1) = x (3.6)

nin = M = npixel (3.7)

The hypotheses hW,b(x), with parameters W, b that we can fit to our data is

determined as:

hW,b(x) = a(3) (3.8)

The neural network for our problem is illustrated in Figure 3.4.

Training

Suppose we have a fixed training set {(x(1), y(1)), ..., (x(m), y(m))} of m training

examples, where x(i) and y(i) are the image descriptor and the corresponding

label of image s(i) respectively. Since a(1) is set to x(i, image descriptor x(i must

be normalized to the range [0, 1] before being inputted to the neural network.

Also, recall that hW,b(x)k is set to a
(3)
k whose value is in the range [0, 1]. Al-

though a class label takes value from 1, 2, ..., nclass, for the purpose of training a

neural network, we need to record the training labels as vectors containing only
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Figure 3.4: The Neural network model for our problem.

values 0 or 1, so that:

y =



1

0

0
...

0


,



0

1

0
...

0


, ...or



0

0

0
...

1


(3.9)

Specifically, if sketch image s(i), whose image descriptor is x(i), belongs to class

k, then the corresponding y(i) should be a nclass-dimensional vector with yk = 1,

and the other elements equal to 0.

After normalizing all training examples, we can train our neural network us-

ing batch gradient descent. In detail, for a single training example, the cost

function with respect to that single example is defined as follows:
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J (W, b;x, y) =
1

2
‖hW,b(x)− y‖2 (3.10)

Let us define the overall cost function for a training set of m examples to be:

J (W, b) =

[
1

m

m∑
i=1

J (W, b;x, y)

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
=

[
1

m

m∑
i=1

(
1

2

∥∥∥hW,b (x(i))− y(i)∥∥∥2)]+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2 (3.11)

The first term in Equation 3.11 is an average sum-of-squares error term. The

second term is a regularization term which helps reduce the magnitude of the

weights and prevent overfitting.

The main purpose of training a neural network is to minimize cost function

J (W, b) with respect to W and b. This task can be done in two steps as follows:

• Initialize each parameter W
(l)
ij and each b

(l)
i to a small random value near

zero.

• Use an optimization algorithm such as batch gradient descent to update

the parameters W, b. For example, applying batch gradient descent to our

problem, we have to repeat one iteration of gradient descent to update the

parameters W, b as follows:

W
(l)
ij := W

(l)
ij − α

∂

∂W
(l)
ij

J (W, b) (3.12)

b
(l)
i := b

(l)
i − α

∂

∂b
(l)
i

J (W, b) (3.13)

where α is the learning rate. The algorithm stops when no significant

change of the parameters W, b is updated.
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The pivotal step of batch gradient descent is computing the partial derivatives
∂

∂W
(l)
ij

J (W, b) and ∂

∂b
(l)
i

J (W, b) in Equation 3.12 and 3.13 respectively. Referring

to Equation 3.11, these partial derivatives can be computed as:

∂

∂W
(l)
ij

J (W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J
(
W, b;x(i), y(i)

)]
+ λW

(l)
ij (3.14)

∂

∂b
(l)
i

J (W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J
(
W, b;x(i), y(i)

)
(3.15)

The direct computation of these derivative is very complicated. An efficient way

to estimate these derivatives is using the backpropagation algorithm [65]. This

algorithm includes the following steps.

• Perform a feedforward pass, which means computing the activations for

the input layer L1, then the hidden layer L2, and finally the output layer

L3.

• For each unit i in the output layer L3, assign

δ
(3)
i =

∂

∂z
(3)
i

1

2
‖y − hW,b(x)‖2 = −

(
yi − a(3)i

)
f ′
(
z
(3)
i

)
(3.16)

• For each unit i in layer L2, set

δ
(2)
i =

(
nout∑
j=1

W
(2)
ji δ

(3)
j

)
f ′
(
z
(2)
i

)
(3.17)

For each unit i in layer L1, set

δ
(1)
i =

(
nhid∑
j=1

W
(1)
ji δ

(2)
j

)
f ′
(
z
(1)
i

)
(3.18)
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• Compute the desired partial derivatives as follows:

∂

∂W
(l)
ij

J (W, b;x, y) = a
(l)
j δ

(l+1)
i (3.19)

∂

∂b
(l)
i

J (W, b;x, y) = δ
(l+1)
i (3.20)

After training the neural network, we have a set of optimized parameters (W, b) =

(W (1), b(1),W (2), b(2)), which represents our trained neural network.

Prediction

Given a testing example x(t), we have to perform a feedforward pass with the op-

timized parameters (W, b) to compute hypotheses hθ(x
(t)). The predicted class

label of the testing example from the neural network is the label that has the

largest output (hθ(x
(t)))k. In other words:

pred(x(t)) = arg max
k=1,...,nclass

(hθ(x
(t)))k (3.21)

3.3.4 Summary

Approach using Neural Network is able to classify images based on their de-

scriptors consisting all pixels. However, the input data to the neural network

is very raw, which not only increases the training time but also decreases the

classification accuracy of the neural network.

3.4 Approach 2 - Using Sparse Autoencoder

This approach also belongs to the first group of approaches, which regards an

image as a whole. The idea of the approach is to exploit unsupervised learning

for encoding images. While supervised learning is very powerful, its restriction

is that it requires researchers to have knowledge in target domains to figure
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out a good feature representation so that a supervised learning algorithm can

perform well. For the problem of image classification, finding a good feature

representation means finding an good image encoding scheme, which is difficult

for researchers who are not familiar with terms of image. For example, in Ap-

proach using Neural Network, we suppose we do not know much about image

information and image processing, so we put all raw data of each image directly

to a neural network. Fortunately, the knowledge in the domain of digital image

can be ignored by using an autoencoder, which is a powerful unsupervised learn-

ing method that can automatically learn good features from unlabeled images.

Specifically, this approach uses a sparse autoencoder as a tool for encoding

images. The image descriptors resulted from the autoencoder are then used to

train a SVM, which is a supervised learning algorithm. The flow of the approach

is shown in Figure 3.5.

Figure 3.5: The flow of Approach using Sparse Autoencoder.

3.4.1 Global Feature Extraction

Like Approach using Neural Network, to avoid the large number of pixels, all

images are resized to a small size (e.g. 32× 32 or 64× 64). Next, we extract the

grid containing all pixels of each image. Each grid is the global information of

entire image.
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3.4.2 Building Image Descriptor

We also unroll all pixels to form a vector x ∈ Rnpixel. This vector, however, is not

the final image descriptor of the image. The vector x is considered a temporary

representation, which is used as the input for an autoencoder to encode into a

final image descriptor ẍ ∈ RM .

We treat our labeled training examples {(x(1), y(1)), ..., (x(m), y(m))}, where x(i)

is the temporary representation of sketch image s(i) created above, as unlabeled

training examples {x(1), ..., x(m)}. An autoencoder [26] is a special neural net-

work that applies propagation, setting the target values to be equal to the inputs.

We use the same neural network model and notations applied as a classifier

in Approach using Neural Network (see 3.3) for our autoencoder with addition-

ally setting y(i) = x(i) and nhid = M where M is the number of dimensions of

the final image descriptor ẍ(i) as mentioned above. The autoencoder used in

this approach is illustrated in Figure 3.6.

The autoencoder tries to learn a hypotheses hW,b(x) ≈ x. In other words, given

an input x, the autoencoder tries to approximate x by learning a function such

that through that function the autoencoder can output x̂ similar to x.

As nhid < nin, i.e. M < npixel for our autoencoder, the autoencoder is able

to learn a compressed representation of the input data, which is shown as the

activation of the hidden layer. That means the autoencoder tries to reconstruct

the npixel-dimensional input x in order to encode it into only a M -dimensional

image descriptor.

As nhid > nin, i.e. M > npixel for our autoencoder, the autoencoder is also

able to learn a very good representation of the input data if we impose a spar-

sity constraint on the hidden units. Intuitively, a neuron is considered being

active if its activation is close to 1, or being inactive if its activation is close to 0.
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Figure 3.6: The autoencoder is used in Approach 2 for encoding image.

We wish the neurons to be inactive most of the time. Let ρ̂j denote the average

activation of hidden unit a
(2)
j over the training set. ρ̂j is computed as:

ρ̂j =
1

m

m∑
i=1

[
a
(2)
j (x(i))

]
(3.22)

where a
(2)
j (x(i)) denotes the activation of hidden unit u

(2)
j if the neural network

is given a specific input x. We want a sparsity constraint to be approximately

enforced:

ρ̂j = ρ (3.23)

where ρ is a sparsity parameter, which is typically a small value close to zero.

Due to this constraint, the hidden unit’s activations is mostly near 0, i.e. inac-

tive. Imposing the sparsity on the autoencoder causes the cost function to be
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updated to a new cost function:

Jsparse(W, b) = J(W, b) + β

nhid∑
j=1

KL(ρ || ρ̂j) (3.24)

where
nhid∑
j=1

KL(ρ||ρ̂j) is a sparsity penalty term, which is added to cause ρ̂j to

be close to ρ, and β is used to control the weight of the sparsity penalty term.

KL (ρ || ρ̂j) is the Kullback-Leibler (KL) divergence [3] which is defined as:

KL (ρ || ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(3.25)

The KL-divergence has the property that it obtains the minimum of 0 at ρ̂j = ρ,

and otherwise it blows up as ρ̂j diverges from ρ. For this reason, minimizing

this penalty term keeps ρ̂j not to deviate significantly from ρ.

After training our sparse autoencoder in the same way used for the neural net-

work in Approach 1, we also obtain optimized parameters (W, b) = (W (1), b(1),W (2), b(2)).

We then use the pair (W (1), b(1)) to compute activations of hidden units a
(2)
k (x(i))

for training example x(i). The final image descriptor ẍ(i) = [ẍ
(i)
1 , ..., ẍ

(i)
M ] of sketch

image s(i), which corresponds to temporary representation x(i), is exactly those

activations:

ẍ
(i)
k = a

(2)
k (x(i)), k = 1, ...,M (3.26)

The image descriptors of training images are used to train a SVM in the stage

of classifier training.

3.4.3 Classifier Training

This approach uses a linear Support Vector Machine (SVM) as a classifier. SVM

is one of the best supervised learning algorithms. The idea of this classifier is

to build a classification model for each class, which is an optimal separating
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hyperplane, also called the decision boundary, to divide a set of data points into

two separate region each of which corresponds to being either of that class or not

of that class. We first briefly describe a linear SVM model, then demonstrate

how to train the SVM from the training examples, which is the image descriptors

encoded from our sparse autoencoder in the encoding stage, and finally show

how to predict the class label for a testing example.

Linear SVM Model

A binary SVM is used for a binary classification problem in which an example,

i.e. feature vector, x has its class label y ∈ {1,−1}. We define our binary clas-

sifier with parameters w, b as:

hw,b(x) = g(ωTx+ b) (3.27)

where g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise. Intuitively, equation

ωTx + b = 0 plays the role of a separating hyperplane which separates the

space into two sides. ωTx + b can be considered a function. One of the sides

corresponds to class label 1, which contains data points, each of which is positive

as plugged into the function. The other side corresponds to class label -1.

Given an example x(i), y(i), the functional margin of (w, b) with respect to the

example is defined as follows:

γ̂(i) = y(i)
(
wTx(i) + b

)
(3.28)

Given a set of examples U = {(x(i), y(i)); i = 1, ...,m}, γ̂ denotes the functional

margin of (w, b) with respect to U . This can be determined as the smallest of

the functional margins of the individual examples:

γ̂ = min
i=1,...,m

γ̂(i) (3.29)
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The functional margin, however, depends on the magnitude of wTx+b. To make

the functional margin invariant to rescaling of the parameters (w, b), we define

the geometric margin of (w, b) with respect to an example x(i), y(i) to be:

γ(i) = y(i)

((
w

‖w‖

)T
x(i) +

b

‖w‖

)
(3.30)

The geometric margin of a classifier with respect to an example is visualized

in Figure 3.7. In Figure 3.7, the line that separates the side containing circle

signs and the side containing cross signs is the separate hyperplane, i.e. the

decision boundary, ωTx + b = 0. The vector w is orthogonal to the separating

hyperplane. Point A represents the input x(i) of some an example with class

label y(i) = 1. The line segment AB, which is the distance from point A to the

separating hyperplane, represents the geometric margin of (w, b) with respect to

example x(i).

Figure 3.7: The geometric margin of a classifier with respect to an example. 1

With the set of example U = {(x(i), y(i)); i = 1, ...,m}, we also define the geo-

metric margin of (w, b) with respect to U as γ:

γ = min
i=1,...,m

γ(i) (3.31)

1Image source: https://class.coursera.org/ml/
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Intuitively, enlarging the geometric margin increases the possibility of correct

classification. Thus, in the problem of binary classification, the main goal is to

find a decision boundary that maximizes the geometric margin γ of the classi-

fier with respect to a given set of examples. This is equivalent to solving the

following optimization problem:

max
w,b,γ

γ

s.t. y(i)
((

w
‖w‖

)T
x(i) + b

‖w‖

)
≥ γ, i = 1, · · · ,m

‖w‖ = 1

(3.32)

Due to the relation γ = γ̂
‖w‖ , we can rewrite the optimization problem in terms

of γ̂ to remove the constraint ‖w‖ = 1 which is non-convex one as follows:

max
w,b,γ

γ̂
‖w‖2

s.t. y(i)
(
wTx(i) + b

)
≥ γ̂, i = 1, ...,m

(3.33)

The objective function γ̂
‖w‖ is non-convex again. Since the geometric margin is

invariant to rescaling of the parameters as we mention above, we can enforce the

scaling constraint that the functional margin of w, b with respect to the training

set must be 1:

γ̂ = 1 (3.34)

Rescaling the functional margin γ̂(i) = y(i)
(
wTx(i) + b

)
can be done by rescaling

w, b, so this scaling constraint do not change the meaning of our optimization

problem. Substituting this into our problem, we have the following equivalent

problem:

min
w,b,γ

1
2‖w‖

2

s.t. y(i)
(
wTx(i) + b

)
≥ 1, i = 1, ...,m

(3.35)

Here, maximizing γ̂
‖w‖ = 1

‖w‖ is equivalent to minimizing ‖w‖2. To solve the opti-
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mization problem in 3.51, we can use either commercial quadratic programming

[54] or Lagrange duality [38]. Solving this optimization problem results in the

optimal margin classifier, which is the parameters w, b with the largest possible

geometric margin with respect to the training set. The points with smallest

margins, which are closest to the decision boundary, lie on two lines, which are

denoted by dashed lines in Figure 3.8, parallel to the decision boundary. These

points are called the support vectors.

Figure 3.8: An optimal margin classifier with its support vectors. 2

In some cases, set of examples are non-linearly separable, which means it is

impossible to separate the positive and negative examples using some decision

boundary. For this reason, to allow examples to have functional margin less

than 1, the constraint of the margin in Equation 3.51 is changed to a looser one

as follows:

min
w,b,γ

1
2‖w‖

2
+ C

m∑
i=1

ξi

s.t. y(i)
(
wTx(i) + b

)
≥ 1− ξi, i = 1, ...,m

ξi ≥ 0, i = 1, ...,m

(3.36)

where
m∑
i=1

ξi is a penalty term, which is added to ensure that most examples have

2Image source: https://class.coursera.org/ml/
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functional margin at least 1, and C is used to control the weight of the penalty

term.

Training

We have a set of training examples {(x(1), y(1)), ..., (x(m), y(m))}, where x(i) is

actually image descriptor ẍ(i) resulted from the image encoding stage, and y(i)

is the class label of corresponding image s(i).

Since our problem has more than two class, we have to use a multiclass SVM

instead of a binary SVM. A multiclass SVM can be constructed by many ways

such as one-versus-all strategy, one-versus-one strategy, using directed acyclic

graph, or using error-correcting output codes. We, however, choose one-versus-

all strategy for our multiclass SVM because this strategy is very popular and

commonly used.

In one-versus-all classification, we have to train multiple binary classifiers, one

for each class. For our problem, we have nclass classes of sketches, so we train a

number of nclass binary SVM, one of which is for each of the nclass classes in our

training set of sketches. When training the binary SVM for class k, we have to

set label y(i) of training example x(i) to 1 if y(i) = k. Otherwise we set label y(i)

to -1 if y(i) 6= k to indicate this training example does not belong to class k. We

train each binary SVM independently using Equation 3.36.

AFter the training step, we attain a set of nclass binary SVM {(W (1), b(1)), ..., (W (nclass), b(nclass))}
where (W (k), b(k)) are the parameters of the binary SVM for class k.

Prediction

Given a testing example x(t), we plug the example into the trained SVM of each

class k to compute the geometric margin γ(t) = 1
(

(w(k))
T
x(t) + b(k)

)
, which can

be considered the probability that the example belongs to class k. We then pick

the class for which the corresponding SVM outputs the highest probability and

48



return the class label as the prediction for the testing example:

pred(x(t)) = arg max
k=1,...,nclass

(
(w(k))

T
x(t) + b(k)

)
(3.37)

3.4.4 Summary

Approach using Sparse Autoencoder uses a SVM to classify images based on

the feature representation extracted by a sparse autoencoder. The sparse au-

toencoder can be also used to find useful features for a wide range of problems

(e.g. ones in text, audio, etc). However, even though Approach using Sparse

Autocencoder enhance the performance of Approach using Neural Network by

obtain a better encoding than the raw representation, the feature resulted from

this simple version of sparse autoencoder is not by itself competitive with the

best hand-engineered features in the field of image classification.

3.5 Approach 3 - Using Explicit Feature Map

This approach is suggested in one example of image classification in VLFEAT

[58]. The approach falls into the second group of approaches, which regards an

image as a collection of image patches. The approach builds the descriptor for

each image by constructing a spatial pyramid of histograms on the image using

Vector Quantization coding. The matching kernel that is commonly used for

evaluating the similarity between two histograms is either intersection kernel or

Chi-square kernel. Both these kernels are non-linear. While non-linear kernels

tend to give better classification accuracy, linear kernels are more efficient for

training. Non-linear kernels are conventionally dealt by non-linear SVM with

the kernel trick. However, in this approach, a new approach is suggested to

compute an explicit feature map [60] to transform the image descriptors to a

linear space so that they can be trained in a linear SVM with a linear kernel.

Specifically, in this approach, to encode sketch images, each image is first ex-

tracted a dense set of SIFT descriptors. The space of the SIFT features extracted

from a subset of training images are then clustered using K-Means algorithm
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to make a dictionary of visual words each of which corresponds to a cluster.

Next, the descriptors of each image are quantized into visual words using the

conventional method of vector quantization. The quantized descriptors are then

used to build a histogram of visual words using sum pooling. Afterwards, the

histograms of all levels of image resolutions are concatenated to form a spatial

pyramid of histograms for each sketch image. The resulting spatial histogram is

considered the image descriptor.

For the classifier training stage, an explicit feature map is computed to trans-

form the image descriptor of each image. The transformed image descriptors are

then used to train a linear multiclass SVM. The flow of this approach is shown

in Figure 3.9.

Figure 3.9: The flow of Approach 3.

3.5.1 Feature Extraction

This step extracts dense multi-scale SIFT descriptors for each sketch image s(i) in

our training set. We prefer the second strategy for recognizing sketches because

the first one based on interest points is only suitable for texture or scene images,

which have many salient points, not for sketch images. The number of interest

points per sketch image is too small to represent the whole sketch. Therefore, we

use only dense features, specifically dense SIFT, for all approaches of this group.

Next, the patches around the features are described by vectors of the same
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length, e.g. 128 for SIFT feature. These vectors are called feature descriptors.

After this step, we obtain a set of feature descriptors for each image.

SIFT Feature

The scale invariant feature transform (SIFT) descriptor were introduced by Lowe

[36]. It is used to describe the information of the image region around interest

points found by the SIFT detector. The intensity image is filtered with a dif-

ference of Gaussian (DoG) kernel at increasingly coarse scales. The resulting

images are then stacked to a volume. Scale-space extrema are detected within

the volume, and DoG interest points are then localized. Next, each detected

keypoint is assigned a particular scale and one or more orientations obtained

from local gradient directions. This kind of SIFT feature is also referred as

sparse SIFT feature because it is extracted based on interest points.

Figure 3.10: SIFT descriptor a) Gradient map for the local patch around a SIFT

interest point. b) Orientation histogram for each cell of the patch.3

The square local patch around the interest point are described by the SIFT

descriptor. First, the gradient orientation and amplitude map of a 16 x 16

pixel patch around the interest point are computed. The 16 x 16 patch is then

subdivided into non-overlapping 4 x 4 cells. In each cell, the image orientation

previously computed is quantized into 8 bins depicting 8 different gradient direc-

3Image source: http://www.computervisionmodels.com/
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tions over the range 0−360o, resulting in a histogram of 8 orientations weighted

by the pixel’s gradient amplitude and by the pixel’s distance from the interest

point. Finally, histograms of 4 x 4 = 16 cells are concatenated to make a final

descriptor of the region around the interest point which is a single vector of 128

dimensions (16 cells x 8 dimensions). The descriptor is normalized afterwards.

An illustration of SIFT descriptor is shown in Figure 3.10.

As reflected in the name, SIFT descriptor is invariant to translation, scaling,

and rotation. Due to using gradients and being normalized, the SIFT descrip-

tor is invariant to constant intensity changes and contrast as well. In addition,

the descriptor is not affected much by small deformation because of orientation

pooling within each cell.

Dense SIFT Feature

Figure 3.11: Dense SIFT descriptor geometry.4

However, sparse SIFT features are not suitable for our sketch recognition

problem. Since the number of sparse SIFT features extracted from an sketch

4Image source: http://www.vlfeat.org/api/dsift.html
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image is usually small, those features cannot represent the whole image. We

extract dense SIFT features from sketch images instead. Dense SIFT [6] is a

dense version of SIFT that computes a large number of descriptors of densely

sampled features instead of interest points determined by the SIFT detector.

Specifically, an image is divided into a regular grid with sampling step of L pix-

els. N is chosen to be 5, 10 and 15 as well. SIFT descriptor is then computed

on every points on the grid. Circular support patches with radii R = 4, 8, 12

and 16 pixels are used when computing SIFT descriptor at each point on the

grid. An illustration of dense grid of SIFT can be seen in Figure 3.11.

This process results in k 128-dimensional SIFT descriptors (where k is the num-

ber of circular support patches) that represents the visual information of each

grid point. As k > 1, multiple descriptors are calculated to support multiscale

variation. There is a overlap between the patches with radii 8, 12, and 16. The

parameters L and k are significant because they control the overlap degree. The

resulting descriptors are invariant to rotation due to the rotation invariance of

SIFT.

After the step of feature extraction, we have the same number of SIFT descrip-

tor, denoted by N for each sketch image s(i). Let the set of the SIFT descriptors

for sketch image s(i) be denoted by V (i) = {v(i)1 , ..., v
(i)
N }, i = 1, ...,m where m

is the number of sketch images in our training set and v is a D-dimensional

feature vector. Here, D = 128 for SIFT descriptor. We also use V to de-

note the set of the SIFT features extracted from all training sketch images. So

V = {V (1), ..., V (m)}.

3.5.2 Visual Dictionary Construction

This step follows the bag-of-words model [14] which consider an image a col-

lection of visual words instead of discrete visual descriptors. The total number

of the visual descriptors is actually very large. However, the similar descriptors

concentrate in some regions that are approximately disjoint in the feature space.

Hence, in this step, we use K-Means algorithm to partition the visual descriptors
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into K clusters to make a dictionary of visual words, each of which corresponds

to a cluster.

K-Means Clustering Algorithm
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+
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Figure 3.12: K-means algorithm for K = 3 clusters. a) Initialize 3 cluster centers

(drawn as crosses) to random positions in the descriptor space. b) Assign each

descriptor to the nearest cluster center. c) Update the cluster centers to be the

mean of the cluster’s descriptors. d-i) Alternate steps b and c iteratively until

there is no change of centers.5

K-means is probably the most popular clustering algorithm. It aims to par-

tition the space of visual descriptors into informative regions whose internal

5Image source: http://www.computervisionmodels.com/
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structure can be ignored. In terms of image classification, these informative re-

gions are referred as visual words and the descriptors space is called the visual

vocabulary.

We take from the set V a subset of I visual descriptors u1, ..., uI where ui ∈ V =

{v1, ..., vN}. K-means algorithm tries to find K cluster centers µ1, µ2, ..., µK ∈
RD and I indexes h1, h2, ..., hI ∈ {1, ..., K} that assign descriptor ui to the cor-

responding center µhi. The descriptors hereby are approximated as xi ≈ µhi.

To figure out the assignment indexes and the cluster centers, we optimize the

following problem:

µ1..K , h1..I = arg min
µ,h

I∑
i=1

‖ui − µhi‖
2

(3.38)

This cost function can be minimized using either Lloyd’s algorithm [35] or Ap-

proximate Nearest Neighbour (ANN) algorithm. We use the former which is

more common. Lloyd’s algorithm is an alternating strategy in which we first

seek the Euclidean nearest cluster center for each descriptor:

hi = arg min
hi

‖ui − µhi‖
2

(3.39)

Next, we update the center for each cluster as follows:

µk = arg min
µk

I∑
i=1

‖ui − µhi‖
2

=

I∑
i=1

uiδ(hi − k)

I∑
i=1

δ(hi − k)

(3.40)

where δ(t) returns 1 as t equals 0 and 0 otherwise. By this way, the updated

center for each cluster µk is chosen to be the mean of the descriptors which be-

longs to that cluster. The process of K-means clustering algorithm is illustrated

in Figure 3.12.
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The step of clustering results us a set B of K clusters µ1, µ2, ..., µK in D-

dimensional space. µi is called the codeword, i.e. the visual word. B is called

the codebook, i.e. the visual dictionary.

3.5.3 Quantization

Based on the bag-of-words model, this step tries to quantize the large set of the

visual descriptors to a smaller set of the visual words, i.e. consider an image

in terms of visual words rather than visual descriptors. Specifically, each D-

dimensional descriptor is encoded to a K-dimensional vector which belongs to

the space of the codebook. In this step, we use the vector quantization coding

for quantizing the descriptors.

Vector Quantization

Vector quantization (VQ) coding plays a role of baseline encoding upon which

many later coding methods improve. Recall that V (t) = [v
(t)
1 , ..., v

(t)
N ] ∈ RD×N

is the set of descriptors for sketch image s(t) in a D-dimensional space. The

codebook B = [µ1, ..., µK ] ∈ RD×K where each codeword µi corresponds to a

visual word is given from the step of visual dictionary construction. VQ coding

tries to solve the following constrained least square fitting problem:

arg min
C(t)

N∑
i=1

∥∥∥v(t)i −Bc(t)i ∥∥∥2
s.t.
∥∥∥c(t)i ∥∥∥

l0
= 1,

∥∥∥c(t)i ∥∥∥
l1

= 1, c
(t)
i ≥ 0, ∀i

(3.41)

where C(t) = [c
(t)
1 , ..., c

(t)
N ] ∈ RK×N contains the corresponding codes for elements

of V (t). The constraint
∥∥∥c(t)i ∥∥∥

l0
= 1 is given to make sure only one non-zero ele-

ment is allowed in each code c
(t)
i , corresponding the the quantization id of v

(t)
i .

The constraint
∥∥∥c(t)i ∥∥∥

l1
= 1, ci ≥ 0 makes sure the coding weight for v

(t)
i must

be 1. Two above constraints leads to the fact that each descriptor is assigned

(quantized) to a unique codeword, i.e. hard assignment, and the coding weight

is always 1.
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This step of quantization results in set of codes C(t) = [c
(t)
1 , ..., c

(t)
N ] corresponding

to set of descriptors V (t) = [v
(t)
1 , ..., v

(t)
N ] for sketch image s(t).

3.5.4 Building Image Descriptor

The conventional bag-of-words encoding completely disregard the spatial layout

of the features in the image, and hence cannot know the geometrical regularities

in image composition and the features’ spatial arrangement, which can make the

classification task more accurate. To incorporate weak geometry into a bag-of-

words encoding, the spatial pyramid layout is used to build the image descriptor.

This spatial pyramid layout can be extended to any encoding by computing one

encoding for each spatial region and then concatenating to build the result de-

scriptor that represents the image.

In this step, we pool the descriptors of each image on a spatial pyramid con-

structed for the image. The pooled descriptors from every spatial regions are

then concatenated to form a spatial pyramid representation of the image, which

is the final image descriptor. We choose the average function as the pooling

function for each spatial region, which corresponds to a resulting histogram of

visual words. We first introduce the pyramid matching framework as well as the

spatial pyramid scheme applied for image histograms. Then we show how to

apply this scheme to our quantized features so as to build the image descriptor.

Pyramid Matching Framework

Pyramid matching [22] is a scheme used to estimate the approximate similarity

between two sets of feature vectors, i.e. the distance between these two set in the

same feature space. The idea of this scheme is to combine the representations

of smaller set partitions in the feature space at multiple resolution and compare

resulting multi-resolution representations of sets. More specifically, this scheme

makes a sequence of increasingly coarser grids in the feature space and takes

a weighted sum of the number of matches for each resolution. Two points are
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regarded as a match if they belongs to the same grid cell at the same resolution.

Matches found at finer resolutions are weighted more because those matches are

more highly expected than matches at coarser resolutions.

Let us formalize the scheme’s idea. Two sets of vectors X and Y in a d-

dimensional feature space are given. For each resolution l ∈ 0, 1, 2, ..., L, the

grid is divided in to 2l cells along each dimension, resulting in D = 2dl cells in

total. Let H l
X and H l

Y be the histograms of X and Y at the resolution l, so

that H l
X(i) and H l

Y (i) count the number of points from X and Y that belong

to the i-th cell of the grid. The number of matches between two sets X and Y

at resolution l is computed by the histogram intersection function:

I(H l
X , H

l
Y ) =

D∑
i=1

min(H l
X(i), H l

Y (i)) (3.42)

For the rest, the notation I l is used to refer I(H l
X , H

l
Y ). In addition, the word

”level” refers to the resolution. It should be noticed that the matches found at

finer level include all the matches at coarser level. For this reason, the number

of new matches at level l is computed as I l − T l+1. The weight factor 1
2L−l is

also added to penalize matches found in finer level. Finally we obtain a pyramid

match kernel:

κL(X, Y ) = IL +
L−1∑
l=0

1

2L−l
(I l − I l+1)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l

(3.43)

Spatial Pyramid Scheme

A pyramid match kernel supports multi-resolution matching of two sets of fea-

ture vectors. It, however, get rid of all spatial information of the set. Moreover,

the pyramid match kernel is not a good kernel for matching high-dimensional

features, e.g. SIFT descriptors, as the matching quality of the pyramid kernel
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decreases linearly with the number of dimensions [30]. Spatial pyramid scheme

[31] is used to overcome these drawbacks.

Figure 3.13: Pyramid constructioon for L = 2. The image contains there kinds

of features, denoted by diamonds, crosses, and circles. The image is divided in

three different levels. The features are then counted for each kind of feature and

each level. Each spatial histogram is weighted as calculated in Equation 3.43 6

This approach applies pyramid matching in the two-dimensional image space,

and use conventional vector quantization techniques to quantize all descriptors

in the feature space into P discrete codewords, i.e. visual words. More specif-

ically, to match two images X and Y , this approach first figures out two sets

of features of type p for each chanel p of two images, denoted by Xp and Yp re-

spectively. All channel kernels sum up the final spatial pyramid matching kernel:

KL(X, Y ) =
P∑
p=1

κL(Xp, Yp) (3.44)

As L = 0, this becomes the standard bag of words method. Furthermore, instead

of computing the kernel for each seperate level, this approach can concatenate

6Image source: http://www.cs.illinois.edu/homes/slazebni/
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the appropriately weighted histograms of all channels at all resolutions as can

be seen in Figure 3.13. The histogram intersection function can be then applied

to the resulting histogram whose number of dimensions is:

P

L∑
l

4l = P
1

3
(4L+1 − 1) (3.45)

Build Image Descriptor

As a result from the quantization step, we achieve the set of codes C(t) =

[c
(t)
1 , ..., c

(t)
N ] corresponding to set of descriptors V (t) = [v

(t)
1 , ..., v

(t)
N ] for sketch

image s(t). The histogram z
(t)
i of each spatial region of the spatial pyramid

constructed for image s(t) is calculated by average pooling on the VQ codes as

follows:

z
(t)
j =

1

Q

Q∑
i=1

c
(t)
ij , j = 1, ..., K

where Q is the number of descriptors in that region of the image and K is the

number of dimensions of VQ code c
(t)
i . Recall that in our problem x(t) ∈ RM

denotes the image descriptor of sketch image s(t). Thus, the image descriptor

x(t), which is formed by concatenating the histograms of all spatial regions, has

the number of dimensions as:

M = K

L∑
l

4l = K
1

3
(4L+1 − 1) (3.47)

where L is the number of levels of the spatial pyramid. The image descriptors

of all training images are used for training a classifier in the next stage.

3.5.5 Classifier Training

Instead of using a non-linear SVM with kernel trick for training images, this

approach compute explicitly a feature map to transform the image descriptors
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obtained from the image encoding stage to a linear space in which a linear SVM

can be used for training. A linear SVM takes only the training time of O(n)

instead of O(n3) that a non-linear SVM takes. More importantly, a linear SVM

helps reduce the testing time from O(n) to O(1), which is more appropriate for

our real-time AR system than a non-linear SVM. First, we give an overview

of kernel as well as kernel trick. Next, we introduce a non-linear SVM with a

non-linear kernel. Afterwards, we demonstrate how to apply an explicit feature

map into our problem.

Kernel

Given a feature map φ mapping vector representations from the original input

space to the feature space, we can define the corresponding kernel to be

K(x, z) = φ(x)Tφ(z) (3.48)

where x, z are two vectors which belong the original input space. For example,

we have a learning algorithm. We want the algorithm to learn feature φ(x)

instead of x. However, the cost of computing φ(x) is often high since it is typ-

ically an extremely high dimensional vector. Fortunately, K(x, z) may be very

inexpensive to calculate without finding directly φ(x) and φ(z) and then taking

their inner product.

Hence, the kernel trick used in this kind of problem is that we try to repre-

sent our learning algorithm only in terms of inner product 〈x, z〉 so that when

the algorithm learns in high dimensional feature space given by φ, all inner prod-

ucts 〈x, z〉 can be replaced with 〈φ(x), φ(z)〉 = K(x, z). Then, we can compute

kernel K(x, z) by using an efficient way without having to explicitly find φ and

represent vector φ(x).

To find an efficient way to compute K(x, z), we consider it from the view of

similarity. In Euclidean space, the similarity between two vector x, z is com-

puted by the inner product:

61



〈x, z〉 = xT z (3.49)

If in some learning problem, we want to measure how similar x and z are in

a different way, we define a reasonable function K(x, z) for measurement. For

example, it can be a Gaussian function:

K (x, z) = exp

(
−‖x− z‖

2

2σ2

)
(3.50)

A raised issue is whether we can use a specified function K(x, z) for similarity

measurement as a kernel for a learning algorithm. In other words, given some

function K, how do we know if it is a valid kernel which means there is some

feature map φ so that K(x, z) = φ(x)Tφ(z) for all x, z.

Given a finite set of m points x(1), ..., x(m), we can overload the same nota-

tion K to denote the corresponding kernel matrix of size m × m in which

Kij = K(x(i), x(j)). By Mercer’s theorem, for function K is a valid (Mercer)

kernel, i.e. if it corresponds to some feature map φ, it is necessary and sufficient

that the corresponding kernel matrix is symmetric positive semi-definite. Then,

there is some Hilbert space H and some feature map φ so that K
(
x(i), x(j)

)
=〈

φ(x(i), φ(x(j)
〉
H

. For this reason, our kernelized learning algorithm can work in

the original input space with the kernel function K as if we map the input data

by the feature map φ to space H and taking their inner products.

Non-linear SVM

A non-linear SVM uses a non-linear kernel for learning. To exploit the kernel

trick, we have to represent a SVM in terms of only inner products. Recall that

in 3.4.3 we obtain the following primal optimization problem for a linear SVM:
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min
w,b,γ

1
2‖w‖

2

s.t. y(i)
(
wTx(i) + b

)
≥ 1, i = 1, ...,m

(3.51)

We can construct the Lagrangian for our problem as follows:

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi

[
y(i)(wTx(i) + b)− 1

]
(3.52)

where αi are the Langrange multipliers. Minimizing this Lagrangian gives us

the following dual optimization problem:

maxαW (α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

y(i)y(j)αiαj
〈
x(i), x(j)

〉
s.t.αi ≥ 0, i = 1, ...,m
m∑
i=1

αiy
(i) = 0

(3.53)

Here, w =
m∑
i=1

αiy
(i)x(i). For a linear SVM, the decision function is f(x) =

wTx+ b. We can rewrite this decision function as follows:

f(x) = wTx+ b =

(
m∑
i=1

αiy
(i)x(i)

)T

x+ b

=
m∑
i=1

αiy
(i)
〈
x(i), x

〉
+ b

(3.54)

This means for a testing example x, we have to calculate a quantity that de-

pends only on the inner product between x and the points in the training set.

To utilize a kernel function for measuring the similarity between two examples

in SVM, by the kernel trick we must replace inner product
〈
x(i), x

〉
in Equation

3.54 with the kernel K(x(i), x).

In this approach, we represents each image as a spatial pyramid of histograms.

To match, i.e. measure the similarity of, two histograms, we can use either in-

tersection kernel or Chi-Square kernel. We prefer the Chi-Square kernel:
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K(x(i), x(j)) = 2
x(i)x(j)

x(i) + x(j)
(3.55)

Explicit Feature Map

Although a non-linear SVM tends to yield better classification accuracy than a

linear SVM [63], it has some significant drawbacks:

• Training using a non-linear kernel is much slower O(n3) than training a

linear SVM O(n).

• Testing is quite slow: the kernel must be computed between each testing

example and all support vectors. For this reason, the testing time is linear

O(n) in the number of support vectors. Meanwhile the testing time of a

linear SVM is only a constant.

• A non-linear SVM takes a lot of memory to store the Lagrange multipliers

α and all the support vectors.

Linear SVMs are very fast to train [18] but limited to use inner products to com-

pare descriptors, which is not suitable for several encodings. In this approach,

we use a explicit feature map [60] in order to take advantages of the accuracy of

a non-linear SVM and the speed of a linear SVM. To this end, a approximated

feature map φ corresponding to kernel K is computed explicitly to transform

input data x, z to a linear space in which we can exploit a linear SVM to train

the transformed data with linear kernel 〈φ(x), φ(z)〉.

An explicit feature map can be used for a class of kernels, called the addi-

tive homogeneous kernels [60] K(f, g) =
∑D

i=1 k(fi, gi) where k is itself a kernel

defined on the non-negative reals. Our chosen kernel, Chi-Square kernel, is a

additive homogeneous kernel. Hence, we can compute a approximated feature

map for this kernel and then use it to transform image descriptors {x(1), ..., x(m)}
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resulted from the encoding stage to a linear space. Finally, we can use a linear

SVM to efficiently train the transformed image descriptors as described in 3.4.3.

3.5.6 Summary

The spatial histograms form the image encoding stage cannot be efficiently

trained in a linear SVM because it is limited to use an inner product to compare

descriptors. Approach using Explicit Feature Map aims to transforming the

image descriptors through a explicit feature map, which emulates a non-linear

Chi-square kernel as a linear one. By this way, the approach can exploit both

the high speed of a linear SVM and the high accuracy of a non-linear SVM.

3.6 Approach 4 - Using Locality-constrained

Linear Coding

This approach belongs to the second group of approaches, which regards an

image as a collection of image patches. The idea of the approach is to replace

the conventional Vector Quantization coding, which is a hard quantization, with

the Locality-constrained Linear Coding (LLC) [62], which is a soft quantization,

in the quantization step. The LLC accompanied by a max pooling function

makes the final image descriptors efficient to be trained in a linear SVM.

Specifically, this approach extracts dense SIFT descriptors for each image and

encodes them by LLC based on a visual dictionary created by K-Means clustering

algorithm. In each region of a spatial pyramid layout of the image, the features

are max pooled. The pooled features of every regions are then concatenated to

form the image descriptor. The descriptor is finally inputted to a linear SVM

for training. The flow of this approach is shown in Figure 3.14.

3.6.1 Feature Extraction

In this approach, we extract a dense grid of SIFT descriptors is extracted from

all training images as in the feature extraction step of Approach 3 (see 3.5.1).
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Figure 3.14: The flow of Approach 4.

After this step, we also attain a set of SIFT descriptors for each image V (i) =

{v(i)1 , ..., v
(i)
N }, i = 1, ...,m where m is the number of sketch images in our training

set and i denotes the i-th image.

3.6.2 Visual Dictionary Construction

The space of SIFT descriptors is clustered using K-Means, which is already men-

tioned in 3.5.2, to construct a visual dictionary B of K visual words µ1, µ2, ..., µK

in D-dimensional space.

3.6.3 Quantization

This step replaces the hard quantization of VQ coding, in which a descriptor

is represented by only one visual word, by the soft quantization of locality-

constrained linear coding (LLC) [62], in which a descriptor is represented by

more than one visual word. Let C(t) = [c
(t)
1 , ..., c

(t)
N ] denote the corresponding

codes for the set of descriptors of image s(i) which is V (t) = [v
(t)
1 , ..., v

(t)
N ] where

N is the number of SIFT descriptors extracted for each sketch image. To reduce

the loss that might be caused by VQ code, LLC code relaxes the restrictive

constraint of VQ problem
∥∥∥c(t)i ∥∥∥

l0
= 1 in Equation 3.41 by adding a locality

regularization term
∥∥∥d(t)i � c(t)i ∥∥∥2, which makes the chosen visual words tend to

be near the descriptor. Then the VQ problem becomes the following one:
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min
C

N∑
i=1

∥∥∥v(t)i −Bc(t)i ∥∥∥2 + λ
∥∥∥d(t)i � c(t)i ∥∥∥2

s.t.1T c
(t)
i = 1,∀i

(3.56)

where � denotes the element-wise multiplication, λ is used to control the weight

of the locality regularization term, and d
(t)
i ∈ RK is the locality controller giving

freedom for each basis vector proportional to its similarity to descriptor v
(t)
i .

d
(t)
i = exp(

dist(v
(t)
i , B)

σ
) (3.57)

where dist(x
(t)
i , B) =

[
dist(x

(t)
i , µ1), ..., dist(v

(t)
i , µK)

]T
, and dist(v

(t)
i , µj) is the

Euclidean distance between v
(t)
i and µj. The constraint 1T c

(t)
i = 1 ensures the

shift-variance of the LLC code.

Figure 3.15: A comparison between Vector Quantization (VQ) and Locality-

constrained Linear Coding (LLC). The chosen bases for the descriptor are high-

lighted in blue.
7

Unlike the VQ code that ignores the relationships between bases, the LLC

code represents each descriptor more accurately by multiple bases, which gives

less quantization error than the VQ code. Furthermore, the LLC code allows the

learned representation to capture salient patterns of descriptors. An illustration

showing the comparison between these 2 coding schemes can be seen in 3.6.3

7Image source: http://www.ifp.illinois.edu/ jyang29/LLC.htm
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3.6.4 Building Image Descriptor

In this step, for each spatial region of a spatial pyramid, which is already men-

tioned in 3.5.4, the codes of the descriptors are pooled together to get the cor-

responding pooled feature. These pooled features from each spatial region are

concatenated to build the final image descriptor for each image. Max pooling is

chosen to be the pooling method in this approach.

In this approach, the representation z
(t)
j of each spatial region for image s(t)

is computed by max pooling on the absolute LLC codes as follows:

z
(t)
j = max(

∣∣∣c(t)1j

∣∣∣ , ..., ∣∣∣c(t)Qj∣∣∣), j = 1, ..., K (3.58)

where Q is the number of descriptors in that region of the image and K is the

number of dimensions of LLC code c
(t)
i . Recall that in our problem x(t) ∈ RM

denotes the image descriptor of sketch image s(t). Thus, the image descriptor

x(t), which is formed by concatenating the representations of all spatial regions,

has the number of dimensions as:

M = K

L∑
l

4l = K
1

3
(4L+1 − 1) (3.59)

where L is the number of levels of the spatial pyramid. The image descriptors

of all training images are used for training a classifier in the next stage.

3.6.5 Classifier Training

In this stage, the set of training example {(x(1), y(1)), ..., (x(m), y(m))}, where

x(i) ∈ RM and y(i) are the image descriptor and the class label of corresponding

image s(i) respectively, are used to train a linear SVM as we describe in Approach

using Sparse Autoencoder (see 3.4.3). We are able to use a linear SVM instead

of a non-linear SVM with a non-linear matching kernel due to two reasons. The

first one is that the LLC code of each descriptor has much less quantization errors
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than VQ code. The second reason is that the representations of spatial regions,

which is computed by max pooling, are salient and robust to local translation.

3.6.6 Summary

Approach using Locality-constrained Linear Coding uses LLC for the spatial

pyramid of image instead of VQ coding in the traditional spatial pyramid so

that a linear SVM can be effective used for training images.

3.7 Approach 5 - Using Kernel Codebook En-

coding

This approach is suggested by Mathias Eitz et al in his SIGGRAPH paper [16]

for their purpose of evaluating computational sketch recognition versus human

sketch recognition. We evaluate this approach because it is one of state-of-

the-art approaches in sketch recognition. This approach belongs to the second

group of approaches, which considers an image collection of image patches. The

authors uses Kernel Codebook Encoding [21, 48] for the quantization step and

uses a non-linear SVM with a Gaussian kernel for evaluating the similarity of

two training samples.

Specifically, in this approach, they first extract a large number of a kind of local

feature similar to SIFT. A subset of these features are then used to constructed

a visual dictionary using K-Means clustering algorithm. Afterwards, all features

are quantized against the visual dictionary using kernel codebook coding. The

codes of each image are then pooled by using average pooling to form a frequency

histogram of visual words. The resulting histogram is considered the image

descriptor, which is used for training a non-linear SVM with a Gaussian kernel.

The flow of this approach is shown in Figure 3.16.
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Figure 3.16: The flow of Approach 5.

3.7.1 Feature Extraction

The authors extract a dense grid of a kind of local descriptor which is closely

related to the SIFT descriptor but stores orientations only. Each of the extracted

descriptor is only a 64-dimensional vector. This step results in a set of descriptors

for each image, V (i) = {v(i)1 , ..., v
(i)
N }, i = 1, ...,m where m is the number of sketch

images in our training set and i denotes the i-th image.

3.7.2 Visual Dictionary Construction

In this step, a subset of the descriptors are clustered into K clusters using K-

means clustering algorithm as we demonstrate in 3.5.2. As a result, we obtain

a dictionary to construct a dictionary B of K visual words µ1, µ2, ..., µK .

3.7.3 Quantization

The authors uses kernel codebook coding [21, 48] as a soft quantization method

in which each descriptor is assigned to multiple visual words. Let C(t) =

[c
(t)
1 , ..., c

(t)
N ] denote the kernel codebook codes for set of descriptors V (t) =

[v
(t)
1 , ..., v

(t)
N ] corresponding to i-th image, where N is the number of descrip-

tors extracted for each sketch image. The kernel codebook code is computed as

follows:
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c
(t)
ij =

K(v
(t)
i , µj)

K∑
k=1

K(v
(t)
i , µk)

(3.60)

where i denotes the i-th image, j denotes the j-th element, µk denotes the k-th

cluster, and K(v, µ) is the distance between descriptor v and cluster µ which is

measured by a Gaussian kernel:

K(v, µ) = exp(−γ
2
‖v − µ‖2) (3.61)

The resulting kernel codebook code c
(t)
i is an encoding of size K.

3.7.4 Building Image Descriptor

The histogram z
(t)
i for image s(t) is computed by average pooling on the kernel

codebook codes as follows:

z
(t)
j =

1

N

N∑
i=1

c
(t)
ij , j = 1, ..., K

where N is the number of descriptors extracted for each image and K is the

number of dimensions of VQ code c
(t)
i . Recall that in our problem x(t) ∈ RM

denotes the image descriptor of sketch image s(t). Thus, the image descriptor

x(t) is set to the histogram of visual words z(t):

x
(t)
i = z

(t)
i , i = 1, ...,M (3.63)

Here, M = K. The resulting image descriptors are used as inputs for the

classifier training stage.
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3.7.5 Classifier Training

In this stage, the set of training example {(x(1), y(1)), ..., (x(m), y(m))}, where

x(i) ∈ RM and y(i) are the image descriptor and the class label of corresponding

image s(i) respectively, are used to train a non-linear SVM with a Gaussian ker-

nel:

K(x(i), x(j)) = exp(−γ
2

∥∥∥x(i) − x(j)∥∥∥2) (3.64)

3.7.6 Summary

Approach using Kernel Codebook Encoding achieves good classification accuracy

because it utilize a non-linear SVM with the Gaussian kernel, which is suitable

for the kernel codebook encoding scheme. However, the non-linear SVM has a

long training time, which makes the approach impractical for real applications.

3.8 Conclusions

We make a brief summary of the five approaches as follows:

• Approach using Neural Network: This approach uses images’ pixels

for training a neural network. Since the images’ pixels are raw data and

the number of zero pixels in a sketch image is typically considerable, so

the neural network cannot classify images with high accuracy.

• Approach using Sparse Autoencoder: This approach enhances Ap-

proach using Neural Network by encoding the raw data of pixels using a

basic version of sparse autoencoder. The resulting representations from

the sparse autoencoder are used as the image descriptors to train a linear

SVM. Although this approach can scale well to new problems, it is hard

for this approach to be competitive with or superior to the best hand-

engineered representations. Perhaps more sophisticated versions of sparse

autoencoder are able to do this.
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• Approach using Locality-constrained Linear Coding: This approach

replaces the Vector Quantization coding in traditional spatial pyramid

matching scheme by a much more effective coding called Lacality-constrained

Linear Coding. The combination of this coding scheme with a max pool-

ing function enables the final image descriptor to be efficiently trained in

a linear SVM. This efficiency allows this approach to be applied in real

applications.

• Approach using Kernel Codebook Encoding: This approach trains

images by using a non-linear SVM with a Gaussian kernel appropriate

to the kernel codebook encoding that is also based on a Gaussian kernel,

which yields high classification accuracy. However, using non-linear kernel

makes the approach impractical for real applications.

• Approach using Explicit Feature Map: This approach uses the spa-

tial pyramid of histograms to build the image descriptors. The image

descriptors are compared by Chi-square kernel. However, to avoid us-

ing a non-linear SVM which increases the training and testing time, the

approach computes a approximated feature map to transform the image

descriptors to a linear space so that the distance between two descriptors

calculated by inner product in that space is equivalent to the distance cal-

culated by Chi-square kernel in original space. By using a explicit feature

map, the approach can exploit both the high speed of a linear SVM and

the high accuracy of a non-linear SVM. For this reason, we choose this

approach for the sketch recognition module in our propose AR system.
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Chapter 4

Experimental Results

At the first stage, we want to verify the efficient from computing accuracy as well

as performance. From that, the evaluation is to choose the effective frameworks

for Augmented reality system.

We choose sketch human dataset in research of Eitz at el. [16] as a practical data

for experiments. Human sketch dataset includes 20000 images corresponding to

250 categories. For each category, there are 80 images scaled at size of 1111 ×
1111 with format of “.png”. Sketches in a category are the different versions of

object and the most of strokes are similarly. Implementing a effective method

for human sketch dataset is huge challenge. The previous results show that the

accuracy human beings recognize objects achieved 73.1%. The best result in

previous work computer recognition achieved 56% at 80 images per category

training size and 20 test images per category and achieved 51% at 50 images

training size and 30 test images per category. This can be considered to the sig-

nificant work for dataset. Based on these properties of dataset, the implemented

methods here can provide knowledge for computer.

Human sketch dataset has a huge sample for providing many data and knowledge

for computer in learning as well as classification. The main purpose of imple-

mented algorithms is to extract the efficient features or representation, which

can be capable of and work well with classifying images for each category. There

are two typical kinds of algorithm for experiments including algorithms inspired
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by neuroscience such as neural network, or sparse autoencoder; and algorithm

about type of encoding in spatial pyramid matching.

In all experiments, we use the powerful tools of Support Vector Machine LIB-

SVM [9] and LIBLINEAR [18] for classifying images. In addition, since the size

of training image is too large for feature extraction (1111× 1111). Specifically,

we select 50 training and 30 testing images randomly per category. All experi-

ments run on a computer with configuration of 8.00GB RAM, 64-bit Operating

System of Intel(R) core(TM) i7 and CPU@ 2.20Hz.

4.1 Experiments setup

4.1.1 Approach 1-Using Neural Network

Algorithms inspired by neuroscience get the high of complexity as well as require

the huge amount of time. The input image in neural networks is intensity pixel

reshaped into column vectors as a input layer. Thus, computation can be very

complicated if the number of size input is very big. Meanwhile size input of

image is 480 × 480 which can cause many disadvantage for computation. To

reduce the cost for computing, images is re-scaled into 32 × 32 which human

beings can still recognize; and normalized pixels values to [0, 1] (gray scale). In

neural networks, the number of hidden size for hidden layer is chosen is 400 or

600. The number of iterations for back-propagation algorithm is 400.

#hidden neurons accuracy (%)

400 20.61%

600 21.61%

Table 4.1: Neural network results for human sketch recognition

From results from Table 4.1, the accuracy is very low. The main reason here is
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reducing the number dimension about size of input images, which causes lacking

of the great number of information for representation of image to classifying in

neural network. In the next experiment, the results of method inherited from

neural network with higher level feature inputted to linear SVM.

4.1.2 Approach 2-Using Sparse Autoencoder

The number of hidden neurons for the sparse autoencoder is 400, i.e. the dimen-

sion of higher level features of each images is 400 (f ∈ R400). These features are

extracted from the number of iterations in back-propagation algorithm of 100

and 400. After that, SVM model is to train and test features to predict label

for test samples.

#iterations accuracy (%)

100 28.41%

400 30.17%

Table 4.2: Sparse autoencoder results for human sketch recognition

The results in sparse autoencoder achieved show that this approach does not

be efficient with low accuracy with base line [16]. However, averaged accuracy

is higher than neural network about 8.18%. Next, different type of approach

about spatial pyramid scheme can achieve better results.

4.1.3 Approach 3-Using Explicit Feature Map

The experiment is to verify the efficient of our proposed system mentioned in

chapter 3. A spatial pyramid of visual words (PHOW) at levels of [1 2 4] and

[2 4] is set up to implement encoding. Specially, the final feature vectors are

also entries in spatial pyramid histogram with the number of visual words for

vocabulary is 600,i.e. K = 600. By concatenating histogram at levels, The
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number of dimensions of feature are 12600 and 12000 for levels [1 2 4] and [2 4]

respectively. SVM is also used to classify with input of features histogram.

Round Accuracy (%)

1 60.27%

2 60.61%

3 60.47%

4 59.80%

5 59.19%

6 59.87%

7 60.56%

8 59.68%

9 61.17%

10 60.55%

Average 60.21% ± 0.58 %

Table 4.3: Results of our approach at pyramid of [2 4] for human sketch recog-

nition within 10 rounds.

Figure 4.1: Results of our approach at pyramid of [2 4] visualization.
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Table 4.3 and Figure 4.1 show the efficient of algorithm at pyramid of [2 4].

The averaged result achieved accuracy of 60.21%, which is higher than accuracy

of base line in approach 4.1.5. From these promising results, approach at pyra-

mid of [1 2 4] also is implemented to enhance classification of SVM to obtain

the higher result.

Round Accuracy (%)

1 62.79%

2 62.25%

3 62.50%

4 62.61%

5 61.65%

6 61.01%

7 61.96%

8 61.91%

9 61.79%

10 62.21%

Average 62.07% ± 0.52 %

Table 4.4: Results of our approach at pyramid of [1 2 4] for human sketch

recognition within 10 rounds.

From Table 4.4 and Figure 4.2, accuracy is enhanced about 1.86%. With

result of base line in approach 4.1.5, the result of accuracy is increasing about

11.97%. To make sense about these results, we also provide confusion matrix

which represent the number of right prediction for each category at level pyra-

mids of [2 4] and [1 2 4].

Figure 4.3 and 4.4 present confusion matrix of the highest accuracy within

10 rounds with the best results of 61.17% and 62.79% at pyramid [2 4] and

[1 2 4] respectively. An effective method retrieve confusion such that entries on

the diagonal are visualized because the value at that entry is the highest within

250 entries (in the same row for each row of confusion matrix).
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Figure 4.2: Results of our approach at pyramid of [1 2 4] visualization.

Figure 4.3: Confusion matrix at pyramid of [2 4] visualization
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Figure 4.4: Confusion matrix at pyramid of [1 2 4] visualization

4.1.4 Approach 4-Using Locality-constrained Linear Cod-

ing

In locality linear coding [62], the dimension of feature vector of pyramid his-

togram [1 2 4] is given by.

1K + 4K + 16K = 21K. (4.1)

where K is the number of visual words in codebook. In this case, K = 1024.

Thus, the dimension of feature vectors is 21504 entries. Then, these feature

vectors are inputted to LIBLINEAR SVM [18] for training and testing.

Because locality linear coding require the less cost of time [62], the algorithm

runs for 10 rounds with randomizing 50-30 train-test sample per category. From

Figure 4.5, the accuracy changes based on randomized data sample in dataset.

These results are higher than results in neural network and sparse autoencoder,

because locality linear coding use features like SIFT can reserve properties of

original image better than scaling and normalizing images.
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Round Accuracy (%)

1 48.37%

2 48.15%

3 47.97%

4 48.58%

5 48.11%

6 48.01%

7 48.21%

8 47.75%

9 47.93%

10 48.18%

Average 48.13% ± 0.0023 %

Table 4.5: Results Locality linear coding in pyramid of histogram approach for

human sketch recognition within 10 rounds (i.e. the number of times for running

time.)

Figure 4.5: Locality linear coding result visualization.

4.1.5 Approach 5-Using Kernel Codebook Encoding

The experiment simulate method of Eitz at el. [16] used features similar to dense

SIFT as local feature combine with Kernel codebook [21, 48] of soft quantization.

The final feature is a dimension histogram of 500. Follow to Eitz at el. [16], we
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classify data set by using Gaussian Kernel SVM with the best parameter γ =

17.8 and cost function C = 3.2. Similar to experiment 4.1.4, the experiment run

within 10 rounds with randomizing samples data to compute averaged accuracy.

Round Accuracy (%)

1 47.29%

2 48.19%

3 47.59%

4 46.73%

5 46.81%

6 46.39%

7 47.36%

8 47.21%

9 47.00%

10 47.33%

Average 47.19% ± 0.50 %

Table 4.6: Results base line approach [16] for human sketch recognition using

classification of Gaussian kernel SVM within 10 rounds.

Figure 4.6 presents the change of accuracy with respect to randomized sam-

ple data. This approach achieved a promising result and well performance for

application system.
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Figure 4.6: Based line result visualization.

4.2 Evaluation

To evaluate the disadvantage and advantage of approaches, the best results of

each approach is presented in the following figure. The approaches use raw pixel

Figure 4.7: The best results of each approach.
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is not suitable for sketch recognition because there are three following reasons.

• Re-scaling and normalizing input image cause lacking of the great number

of information, which lead to the bad representation of image.

• The number of categories is very large (250 objects).

• The complexity of computation for hidden neuron is very big. Increasing

the dimension of feature is very hard and require the great amount of time.

However, image representation in neural network and sparse autoencoder is sim-

ple. Local features is only input of intensity pixels and network learning features

automatically without specific knowledge of experts. This can be considered to

higher level features.

Using dense SIFT as local feature, the approaches achieve the promising result

and is capable of the application of AR system. The approach 4.1.3 achieves the

best results of 62.79%. In addition, the processing of testing or recognizing one

image require the time of 0.6002 seconds including extracting final image de-

scriptor and prediction based on linear SVM testing phase. This can be capable

of AR system in real-time.

4.3 Summary

For each approaches, there still has the disadvantages and advantages in com-

putation and implementation. However, From experiments, the approach 4.1.3

is the most suitable method within 5 approaches for AR system in future. In

our work, we propose sketch recognition module for AR system. Thus, the ac-

curacy and speed for computation in real time is very important. In general,

a efficient sketch recognition approach will help users interact with AR system

more flexibly and effective to sketch what they want.

84



Chapter 5

Proposed Augmented Reality

System

In this chapter, we describe our proposed AR system which recognizes users’

sketches and augment corresponding useful data, either multimedia or social-

media information.

Specifically, types of augmented resources are used for information in AR system

including image, text, audio, video, and 3D models. For each entity, we obtain

the corresponding attributes described in AR information description, which

can be external file module of XML file. With this module, user can select and

configure plugins as well as related attributes of entities in AR system.

Thanks to select an effective sketch recognition algorithm tested in chapter 4,

specific processes are established in Augmented Reality system. This system

provides user a smart environment to interact with computer through sketching

objects with query images captured from camera in real time. In addition, pro-

grammer can change the attributes and functions of plugins which are type of

augmented resource through external handling file of XML in further.

In section 5.5, some demonstrations in real time are presented to describe in-

teraction between human beings and computer through sketching objects. The

objects here belong to the categories in sketch dataset mentioned in research of
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Eitz at el. [16] consist of apple, bowl, bell, wheel, parrot, etc, which are type

resources of image, text, audio, and video.

Additionally, we also try to demonstrate the another categories objects with

3D models combine corresponding videos information. The objects of nine plan-

ets in solar system consist of Sun, Mercury, Earth, Mars, Jupiter, Neptune,

Uranus, Saturn, and Venus are presented form 3D models with video describes

necessary information. This application can be applicable of education.

5.1 Overview

We propose an AR system with sketch recognition including 4 following pro-

cesses:

• Visualization sub-system: This sub-system has 2 main functions. The first

function is capturing frames from the real word and sending the query im-

ages to the processing block for recognizing. The second function is receiv-

ing the AR information corresponding to the query images and augmenting

the information to the original frames.

• Processing sub-system: This sub-system processes the query image to rec-

ognize its category. This sub-system includes 2 processes: training process

and testing process. These 2 phases are described in Section 5.2 and 5.3

respectively.

• AR information management sub-system: This sub-system manages AR

information which is provided for the visualization sub-system to augment.

The overall AR system is shown in Fig. 5.1.
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Figure 5.1: The overall AR system with sketch recognition.

5.2 Training process

The goal of the training process is to build classification models for the training

set of sketches. To this end, the training set is first separated into different cat-

egories. The sketches of each category is then inputted to the sketch recognition

module of our system to train classification models. Different image classifica-

tion approaches can be used for this process. Currently in our system we choose

Approach 5 (see Section 3.7). After finishing the training process, all trained

models are stored in the sketch recognition module for later use in the testing

process. The training process is briefly illustrated in Figure 5.2.
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Figure 5.2: The training process of the system.

5.3 Testing process

In this process, a user’s sketch is captured from the current frame by a camera.

The sketch image is then passed to the AR module. Next, the AR module

sends the query image to the sketch recognition module. Finally, the recognition

module uses the classification models, which are already trained in the training

process, to predict the category of the query image. The output of the testing

process if the category to which the query sketch image belongs. The testing

process is briefly illustrated in Figure 5.3.
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Figure 5.3: The testing process of the system.

5.4 Design Module

This sub-system enables users to define AR information corresponding to a spec-

ified category of sketch. Since AR information can be in many types such as

multimedia information (images, audio, videos, etc.) or social media (webpages,

texts, etc.), we apply a plugin architecture for the design module as illustrated

in Figure 5.4.

The AR information description processor processes AR information description

files (in XML format) to classify them into categories. For each category, the

AR information plugin manager choose a suitable plugin to be responsible for

that category. The goal of a plugin is to enable users to select resources and

configure attributes of information related to AR resources through XML files

that describes AR information description (see Figure 5.5).

Training images are inputted to User interface for training in sketch recognition

module. The categories of entities are created in Augmented Reality system

through training process. With Augmented reality information plugin manager,

user can select necessary augmented resource to add entities for AR system.

There is a constrain in design module. In case of change plugins, user want to

declare new plugin or new entity of the categories, the manipulation in XML file

have to contain that entity with corresponding plugins. In general, user make
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Figure 5.4: Desgin module.

declaration through external XML file module. This helps user approach the

Augmented Reality system naturally and easier.

For each type of augmented information, there is a plugin component in sub-

system design module. The main functions of these plugins are as follow.

• The plugins help user be able to select augmented resources and configure

its attributes, which relate augmented information. In addition, the system

extract descriptions of resource through external XML file.

• Programmer can add new plugin to the system by declaring new entity

class in system and manipulate in XML file with necessary augmented

resource.

In the section 5.5, we will provide some demonstration of Augmented Reality

system, which help users obtain interesting experiences with lively and attrac-

tively information of objects of dataset research of Eitz at el. [16] as well as

planets in solar system applied for education.
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Figure 5.5: AR information description.

5.5 Demonstrations

In our system, we help users interact with nine entities which divided into two

areas. The first area is objects belong categories in dataset mentioned in research

of Eitz at el. [16] consist of apple, bowl, bell, computer monitor, candle, cloud,

wheel, pizza, and parrot. Specifically, the image resource plugin is augmented

to apple. The text plugin is augmented to bowl and computer monitor. The

audio plugin is augmented to bell. And the video plugin is augmented to candle,

cloud, pizza and parrot.

The second area of demonstration, the objects belong categories in solar sys-

tem consist of Sun, Mercury, Earth, Mars, Venus, Jupiter, Uranus, Saturn, and

Neptune. The augmented resources are combine between 3D models and videos
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(a) Apple is image plugin. (b) Computer moniter is text plu-

gin.

(c) Parrot is video plugin.

Figure 5.6: Demonstration for dataset mentioned in research of Eitz at el. [16]

describe for the corresponding planets in real frame.

(a) The Sun. (b) The Earth.

(c) The Mercury.

Figure 5.7: Demonstration for planets in solar system with 3D models and

dissertation video.

The inputted frames for demonstration are images of planet signs in astrology,

92



which help distinguish shape of planets. User needs to remember these signs to

describe for planets in solar system.

5.6 Summary

The proposed Augmented Reality system is architecture of modules combina-

tion with components of systems, which are Visualization sub-system, Processing

sub-system, and Augmented Reality management sub-system. In addition, some

external modules such as sketch recognition module and XML file module are

combined to the system.

In the Augmented Reality system, user can create new training images for

sketch recognition module. For instance, dataset of planet signs in solar sys-

tem mentioned in section 5.5 with interesting augmented resources. This can

be applicable of education in school for children to help approach the science of

astrology as well as useful knowledge about life naturally and lively.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

In the thesis, we study techniques and smart systems of HCI. During the study,

we specially have a major concern for AR, which is a very hot trend of HCI and

promises to be widely applied in daily lives. We study applications, properties

of an AR system as well as frameworks used in AR. We notice that most of

conventional AR systems focus only on enhancing users’ experiences in the ren-

dering phase by enables them to interact with virtual augmented information.

In contrast, the detection phases of AR in those systems mainly utilize a tradi-

tional method that uses inputs of printed predefined templates for detection. We

desire to replace these inputs with a new means of input, which is specifically

users’ sketches in the thesis, so that the way of creating AR inputs becomes

more flexible and bring more exciting experiences to users. For this reason, we

propose and develop a smart environment of AR in which the system is able to

recognize sketches from users and provide helpful multimedia and social-media

information related to their sketches. The proposed system has much practical

value and can be applied in different sectors, especially education due to the

flexible and lively inputs of sketches.

To deal with sketch recognition in the system, we study the problem of sketch

recognition and approaches that have been used to recognize sketches. Among

the approaches, we focus on image classification approaches in Machine Learn-
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ing. The reason is that sketch recognition should be considered a problem of

category-level object recognition instead of instance recognition due to a wide

variance of users’ sketches. For image classification, we evaluate five different ap-

proaches, which follow recent trends in the image classification field of Machine

Learning, to figure out the most suitable approach among them for applying in

the sketch recognition module of our proposed AR system.

For the purpose of evaluation, we use a standard sketch dataset published by Eitz

et al in his SIGGRAPH 2012 paper [16]. After evaluation the approaches, we

realize that Approach using Neural Network has too low classification accuracy

(21.61%) since this approach is only based on raw data of all pixels. Approach

using Sparse Autoencoder is also based on pixels but extract a more effective

representation through a sparse autoencoder. Although the accuracy is raised a

little bit (30.17%), the approach is still not efficient enough to be used. Approach

using Kernel Codebook Encoding, which is suggested by Eitz in the mentioned

paper, yields a quite high accuracy (we obtain 47.19% while they achieves 51%

as described in the paper, maybe due to his optimization). Our other evaluated

approaches are competitive with or superior to their approach. Specifically, Ap-

proach using Locality-constrained Linear Coding is nearly as efficient as their

approach (48.13%). In addition, due to the properties of locality-constrained lin-

ear coding, this approach exploits a linear kernel instead of a non-linear kernel

of their approach, which increases both training and testing time. Remarkably,

Approach using Explicit Feature Map is superior to their approach in both ac-

curacy (62.07%) and speed. This approach computes a explicit feature map to

transform image features from a non-linear space to a linear one so that it can

exploit both the high accuracy of a non-linear classifier and the very high speed

of a linear classifier. We decide to choose Approach using Explicit Feature Map

for the sketch recognition module due to not only its high classification accu-

racy but due to its short testing time, which enables our AR system to run in

real-time.

We test our AR system in a real-time environment and actually the system
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has good stability, high accuracy, and fast response as expected. In addition,

to demonstrate an example application of geography education, we create our-

selves an extra sketch dataset of planet signs with corresponding augmented

multimedia information. Moreover, the sketch recognition module is designed

to be totally independent of the proposed AR system. Therefore, if any ap-

proach yields a better classification performance than Approach using Explicit

Feature Map, we will replace the current approach with the new one for our

sketch recognition module without changing the architecture of the AR system.

A better recognition module will definitely raise the performance of the overall

AR system.

6.2 Future work

For the sketch recognition approach, we plan to improve as follows:

• Use a multiple kernel classifier [57], for example a multiple kernel [59]

which is a combination of dense SIFT, self-similarity and geometric blur

features.

• Try state-of-the-art encodings such as Fisher encoding [47] and Super Vec-

tor Encoding [64].

For the AR system, we plan to improve as follows:

• Enable the system to recognize multiple sketches simultaneously.

• Apply some techniques to help the system stable in various contexts such

as light, wind.

• Create many more practical datasets so that the AR system can be applied

widely.
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APPENDIX

We provide some samples of categories in Human Sketch Recognition dataset.

Figure 6.1: Visualization of 5 samples for 4 categories of Airplane, Axe, Bicycle,

and Grenade
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